Citation: | Zhang Lefu, Huang Tao, Su Haozhan, Gao Yang, Guo Xianglong, Shen Zhao, Chen Kai. Progress and Considerations on Candidate Cladding Materials for Supercritical Water-Cooled Reactors[J]. Nuclear Power Engineering, 2025, 46(1): 183-190. doi: 10.13832/j.jnpe.2025.01.0183 |
[1] |
臧金光,黄彦平. 超临界水冷堆研发进展[J]. 核动力工程,2021, 42(6): 1-4.
|
[2] |
姚磊,夏榜样,卢迪,等. 超临界水冷堆燃料组件及堆芯方案简化设计研究[J]. 核动力工程,2020, 41(4): 45-49.
|
[3] |
甯忠豪,王连杰,卢迪,等. 超临界水冷堆CSR150概念设计[J]. 核动力工程,2023, 44(S1): 9-13, doi: 10.13832/j.jnpe.2023.S1.0009.
|
[4] |
周禹,张宏亮,李满昌,等. 超临界水冷堆堆内构件选材研究[J]. 核动力工程,2013, 34(1): 60-64. doi: 10.3969/j.issn.0258-0926.2013.01.013
|
[5] |
ZHENG H, YU T, QU C T, et al. Basic characteristics and application progress of supercritical water[J]. IOP Conference Series: Earth and Environmental Science, 2020, 555(1): 012036. doi: 10.1088/1755-1315/555/1/012036
|
[6] |
MANDAPAKA K K, CAHYADI R S, YALISOVE S, et al. Corrosion behavior of ceramic-coated ZIRLOTM exposed to supercritical water[J]. Journal of Nuclear Materials, 2018, 498: 495-504. doi: 10.1016/j.jnucmat.2017.10.040
|
[7] |
ZHANG L F, BAO Y C, TANG R. Selection and corrosion evaluation tests of candidate SCWR fuel cladding materials[J]. Nuclear Engineering and Design, 2012, 249: 180-187. doi: 10.1016/j.nucengdes.2011.08.086
|
[8] |
GUZONAS D, EDWARDS M, ZHENG W Y. Assessment of candidate fuel cladding alloys for the Canadian supercritical water-cooled reactor concept[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(1): 011016. doi: 10.1115/1.4031502
|
[9] |
WALTERS L, WRIGHT M, GUZONAS D. Irradiation issues and material selection for Canadian SCWR components[J]. Journal of Nuclear Engineering and Radiation Science, 2018, 4(3): 031005. doi: 10.1115/1.4038367
|
[10] |
DONG Z Q, LI M, BEHNAMIAN Y, et al. Effects of Si, Mn on the corrosion behavior of ferritic–martensitic steels in supercritical water (SCW) environments[J]. Corrosion Science, 2020, 166: 108432. doi: 10.1016/j.corsci.2020.108432
|
[11] |
CABET C, DALLE F, GAGANIDZE E, et al. Ferritic-martensitic steels for fission and fusion applications[J]. Journal of Nuclear Materials, 2019, 523: 510-537. doi: 10.1016/j.jnucmat.2019.05.058
|
[12] |
MEIER G H, JUNG K, MU N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe–Cr and Fe–Cr–X alloys[J]. Oxidation of Metals, 2010, 74(5-6): 319-340. doi: 10.1007/s11085-010-9215-5
|
[13] |
HUANG T, SU H Z, ZHOU Y H, et al. Comparison of the corrosion behavior of four Fe-Cr-Ni austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2025, 603: 155409. doi: 10.1016/j.jnucmat.2024.155409
|
[14] |
ITOH M. Time-dependent power laws in the oxidation and corrosion of metals and alloys[J]. Scientific Reports, 2022, 12(1): 6944. doi: 10.1038/s41598-022-10748-1
|
[15] |
FROMHOLD JR A T. Metal oxidation kinetics from the viewpoint of a physicist: the microscopic motion of charged defects through oxides[J]. Langmuir, 1987, 3(6): 886-896. doi: 10.1021/la00078a004
|
[16] |
CHEN K, ZHANG L F, SHEN Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization[J]. Acta Materialia, 2020, 194: 156-167. doi: 10.1016/j.actamat.2020.05.016
|
[17] |
NEZAKAT M, AKHIANI H, PENTTILÄ S, et al. Oxidation behavior of austenitic stainless steel 316L and 310S in air and supercritical water[J]. Journal of Nuclear Engineering and Radiation Science, 2016, 2(2): 021008. doi: 10.1115/1.4031817
|
[18] |
GALAN F, BUDU A. Structural materials candidate for supercritical water-cooled reactor[J]. UPB Scientific Bulletin, Series C: Electrical Engineering, 2021, 83(1): 277-286.
|
[19] |
GUO X L, FAN Y, GAO W H, et al. Corrosion resistance of candidate cladding materials for supercritical water reactor[J]. Annals of Nuclear Energy, 2019, 127: 351-363. doi: 10.1016/j.anucene.2018.12.007
|
[20] |
LEE J H, KASADA R, KIMURA A, et al. Influence of alloy composition and temperature on corrosion behavior of ODS ferritic steels[J]. Journal of Nuclear Materials, 2011, 417(1-3): 1225-1228. doi: 10.1016/j.jnucmat.2010.12.279
|
[21] |
ZHAN Z X, HUANG X, ZHAO Q, et al. Effect of oxygen concentrations on the corrosion behavior of a duplex-phase FeNiCrCuAl high entropy alloy in supercritical water[J]. Journal of Nuclear Materials, 2022, 572: 154046. doi: 10.1016/j.jnucmat.2022.154046
|
[22] |
HUANG X, LI J, AMIRKHIZ B S, et al. Effect of water density on the oxidation behaviour of alloy A-286 at 625 C–a TEM study[J]. Journal of Nuclear Materials, 2015, 467: 758-769. doi: 10.1016/j.jnucmat.2015.10.023
|
[23] |
黄涛,苏豪展,张乐福,等. 微观组织对800H合金在超临界水中腐蚀行为的影响规律[J]. 核动力工程,2023, 44(5): 251-258, doi: 10.13832/j.jnpe.2023.05.0251.
|
[24] |
WANG J M, ZHOU Y H, WU Y L, et al. Revealing the superior oxidation resistance of alloy 690 in deaerated supercritical water at 600 C through advanced characterization[J]. Materials Characterization, 2024, 210: 113853. doi: 10.1016/j.matchar.2024.113853
|
[25] |
KAMAYA M, HARUNA T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel[J]. Corrosion Science, 2007, 49(8): 3303-3324. doi: 10.1016/j.corsci.2007.01.011
|
[26] |
ZHANG L F, CHEN K, DU D H, et al. Characterizing the effect of creep on stress corrosion cracking of cold worked Alloy 690 in supercritical water environment[J]. Journal of Nuclear Materials, 2017, 492: 32-40. doi: 10.1016/j.jnucmat.2017.05.018
|
[27] |
JE H, KIMURA A. Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents[J]. Corrosion Science, 2014, 78: 193-199. doi: 10.1016/j.corsci.2013.09.016
|
[28] |
苏豪展,王鹏,张乐福. 工质压力及蠕变对冷变形310S不锈钢在超临界水环境下的应力腐蚀开裂行为影响研究[J]. 核动力工程,2022, 43(6): 108-116. doi: 10.13832/j.jnpe.2022.06.0108.
|
[29] |
SHEN Z, ZHANG L F, TANG R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW[J]. Journal of Nuclear Materials, 2014, 454(1-3): 274-282. doi: 10.1016/j.jnucmat.2014.08.006
|
[30] |
CHEN K, WANG J M, SHEN Z, et al. Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water[J]. Journal of Nuclear Materials, 2019, 520: 235-244. doi: 10.1016/j.jnucmat.2019.04.017
|
[31] |
SU H Z, HUANG T, WANG J M, et al. The cracking growth behavior of a sensitized Alloy 800H in supercritical water[J]. Journal of Nuclear Materials, 2023, 583: 154509. doi: 10.1016/j.jnucmat.2023.154509
|
[32] |
WAS G S, AMPORNRAT P, GUPTA G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 176-201. doi: 10.1016/j.jnucmat.2007.05.017
|
[33] |
NOVOTNY R, HÄHNER P, SIEGL J, et al. Stress corrosion cracking susceptibility of austenitic stainless steels in supercritical water conditions[J]. Journal of Nuclear Materials, 2011, 409(2): 117-123. doi: 10.1016/j.jnucmat.2010.09.018
|
[34] |
CHEN K, WANG J M, DU D H, et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water[J]. Corrosion, 2018, 74(7): 776-787. doi: 10.5006/2775
|
[35] |
郑中成,郭立平,唐睿. 超临界水冷堆燃料包壳材料的辐照损伤研究进展[J]. 原子核物理评论,2017, 34(2): 211-218.
|
[36] |
ZHOU R S, WEST E A, JIAO Z J, et al. Irradiation-assisted stress corrosion cracking of austenitic alloys in supercritical water[J]. Journal of Nuclear Materials, 2009, 395(1-3): 11-22. doi: 10.1016/j.jnucmat.2009.09.010
|
[37] |
TEYSSEYRE S, JIAO Z, WEST E, et al. Effect of irradiation on stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1-3): 107-117. doi: 10.1016/j.jnucmat.2007.05.008
|
[38] |
WANG M, SUN H Y, ZHENG W Y, et al. Creep behavior of an alumina-forming austenitic steel with simple alloy design[J]. Materials Today Communications, 2020, 25: 101303. doi: 10.1016/j.mtcomm.2020.101303
|
[39] |
REN J, YU L M, LIU C X, et al. Creep properties, microstructural evolution, and fracture mechanism of an Al added high Cr ODS steel during creep deformation at 600 C[J]. Journal of Nuclear Materials, 2022, 558: 153376. doi: 10.1016/j.jnucmat.2021.153376
|
[40] |
WEN H Y, ZHAO B B, ZHOU J, et al. Early segregation and precipitation at triple junction in an alumina-forming austenitic steel[J]. Materials Letters, 2021, 283: 128802. doi: 10.1016/j.matlet.2020.128802
|
[41] |
JOZAGHI T, WANG C, ARROYAVE R, et al. Design of alumina-forming austenitic stainless steel using genetic algorithms[J]. Materials & Design, 2020, 186: 108198. doi: 10.1016/j.matdes.2019.108198
|
[42] |
GAO Y, SUN D Y, LIU Z, et al. Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water[J]. Corrosion Science, 2024, 227: 111681. doi: 10.1016/j.corsci.2023.111681
|
[43] |
GAO Y, SUN D Y, LIU Z, et al. Anomalous oxidation rate-temperature dependence of alumina-forming austenitic stainless steels exposed to 500–600 °C supercritical water[J]. Corrosion Science, 2024, 231: 111936. doi: 10.1016/j.corsci.2024.111936
|
[44] |
SUN H Y, YANG H J, WANG M, et al. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water[J]. Journal of Nuclear Materials, 2017, 484: 339-346. doi: 10.1016/j.jnucmat.2016.10.039
|
[45] |
LIU L, FAN C L, SUN H Y, et al. Research progress of alumina-forming austenitic stainless steels: a review[J]. Materials, 2022, 15(10): 3515. doi: 10.3390/ma15103515
|
[46] |
SHEN L, WU B J, ZHAO K, et al. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K[J]. Corrosion Science, 2021, 191: 109754. doi: 10.1016/j.corsci.2021.109754
|
[47] |
NIE S H, CHEN Y, REN X, et al. Corrosion of alumina-forming austenitic steel Fe–20Ni–14Cr–3Al–0.6Nb–0.1Ti in supercritical water[J]. Journal of Nuclear Materials, 2010, 399(2-3): 231-235. doi: 10.1016/j.jnucmat.2010.01.025
|
[48] |
HU B, TROTTER G, WANG Z W, et al. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys[J]. Intermetallics, 2017, 90: 36-49. doi: 10.1016/j.intermet.2017.06.011
|
[49] |
GAO Y, SU R R, LIU Z, et al. High-resolution characterization reveals the role of Al content in the evolution of oxide scales formed on alumina-forming alloy exposed to supercritical water[J]. Corrosion Science, 2024, 231: 111968. doi: 10.1016/j.corsci.2024.111968
|
[50] |
UKAI S, FUJIWARA M. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307-311: 749-757. doi: 10.1016/S0022-3115(02)01043-7
|
[51] |
EISELT C C, SCHENDZIELORZ H, SEUBERT A, et al. ODS-materials for high temperature applications in advanced nuclear systems[J]. Nuclear Materials and Energy, 2016, 9: 22-28. doi: 10.1016/j.nme.2016.08.017
|
[52] |
CAO S G, ZHOU Z J. Microstructure and mechanical properties of an ODS ferritic steel with very low Cr content[J]. Journal of Nuclear Materials, 2021, 551: 152971. doi: 10.1016/j.jnucmat.2021.152971
|
[53] |
ROGOZHKIN S, BOGACHEV A, KORCHUGANOVA O, et al. Nanostructure evolution in ODS steels under ion irradiation[J]. Nuclear Materials and Energy, 2016, 9: 66-74. doi: 10.1016/j.nme.2016.06.011
|
[54] |
SONG P, MORRALL D, ZHANG Z X, et al. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C[J]. Journal of Nuclear Materials, 2018, 502: 76-85. doi: 10.1016/j.jnucmat.2018.02.007
|
[55] |
GAO W H, GUO X L, SHEN Z, et al. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water[J]. Journal of Nuclear Materials, 2017, 486: 1-10. doi: 10.1016/j.jnucmat.2017.01.014
|
[56] |
XU S, LONG F, PERSAUD S Y, et al. Oxidation behavior of 9Cr-4.5Al ODS steel in 600 °C supercritical water and the effect of pre-oxidation[J]. Corrosion Science, 2020, 165: 108380. doi: 10.1016/j.corsci.2019.108380
|
[57] |
SHEN Z, CHEN K, GUO X L, et al. A study on the corrosion and stress corrosion cracking susceptibility of 310-ODS steel in supercritical water[J]. Journal of Nuclear Materials, 2019, 514: 56-65. doi: 10.1016/j.jnucmat.2018.11.016
|
[58] |
EDWARDS M, ROUSSEAU S, NOVOTNÝ R, et al. The reproducibility of corrosion testing in supercritical water—results of a second international interlaboratory comparison exercise[J]. Journal of Nuclear Materials, 2022, 565: 153759. doi: 10.1016/j.jnucmat.2022.153759
|
[59] |
SU H Z, SUN D Y, JIANG Y F, et al. Investigation on the corrosion behavior of Alloy 800H at various levels of deformation[J]. Corrosion Science, 2023, 212: 110926. doi: 10.1016/j.corsci.2022.110926
|
[60] |
YIN J W, RAO Z Y, WU D Y, et al. Interpretable predicting creep rupture life of superalloys: enhanced by domain-specific knowledge[J]. Advanced Science, 2024, 11(11): 2307982. doi: 10.1002/advs.202307982
|
[61] |
THÉBAUD L, VILLECHAISE P, CROZET C, et al. Is there an optimal grain size for creep resistance in Ni-based disk superalloys?[J]. Materials Science and Engineering: A, 2018, 716: 274-283. doi: 10.1016/j.msea.2017.12.104
|
[62] |
SHANG Z X, SUN T Y, DING J, et al. Gradient nanostructured steel with superior tensile plasticity[J]. Science Advances, 2023, 9(22): eadd9780. doi: 10.1126/sciadv.add9780
|