Advance Search
Volume 46 Issue 1
Feb.  2025
Turn off MathJax
Article Contents
Gu Ruijie, Dong Chengwu, He Jian, Sun Xiaodan, Yao Di. Maximum Deflection Prediction Method for Plastic Large Deformation of High-energy Pipelines under Impact Load[J]. Nuclear Power Engineering, 2025, 46(1): 216-224. doi: 10.13832/j.jnpe.2025.01.0216
Citation: Gu Ruijie, Dong Chengwu, He Jian, Sun Xiaodan, Yao Di. Maximum Deflection Prediction Method for Plastic Large Deformation of High-energy Pipelines under Impact Load[J]. Nuclear Power Engineering, 2025, 46(1): 216-224. doi: 10.13832/j.jnpe.2025.01.0216

Maximum Deflection Prediction Method for Plastic Large Deformation of High-energy Pipelines under Impact Load

doi: 10.13832/j.jnpe.2025.01.0216
  • Received Date: 2024-04-21
  • Rev Recd Date: 2024-10-10
  • Publish Date: 2025-02-15
  • When high-energy pipelines under the action of impact loads, the structure will subject to large deflection deformation. In order to predict the maximum deformation deflection of high-energy pipelines, a membrane force factor applicable to the structure was derived based on the membrane force factor method (MFM). A more convenient calculation method than traditional methods for mid-span deflection was established, and its accuracy was verified by comparing it with numerical simulation results and experiment results. The research results indicate that MFM has a high accuracy in predicting the deflection of pipeline structures; The magnitude of mid-span deflection is controlled by variable factors. The mid-span deflection increases with the increase of impact load and pipeline length, and decreases with the increase of plastic ultimate bending moment. The predicted deflection of pipelines with high degree of ellipticity is larger than the actual situation beacuse of MFM not taking into account the energy dissipated by section collapse. However, due to the support of high-energy fluid inside the pipeline, the collapse effect of the high-energy pipeline is not obvious. Therefore, this method can be used to predict the large deflection deformation of high-energy pipelines. For pipelines with high degree of collapse, the MFM prediction results are modified by combining the collapse model, which greatly improves the accuracy of the prediction method.

     

  • loading
  • [1]
    CHEN K S, SHEN W Q. Further experimental study on the failure of fully clamped steel pipes[J]. International Journal of Impact Engineering, 1998, 21(3): 177-202 . doi: 10.1016/S0734-743X(97)00083-3
    [2]
    BROOKER D C. Denting of pressurised pipelines under localised radial loading[J]. International Journal of Mechanical Sciences, 2004, 46(12): 1783-1805. doi: 10.1016/j.ijmecsci.2004.11.004
    [3]
    KARAMANOS S A, ANDREADAKIS K P. Denting of internally pressurized tubes under lateral loads[J]. International Journal of Mechanical Sciences, 2006, 48(10): 1080-1094.
    [4]
    李晨,闫秋实,李亮,等. 侧向冲击荷载作用下不锈钢管混凝土柱的力学性能研究[J]. 防护工程,2019, 41(6): 7-14.
    [5]
    姜珊,路国运,杨会伟. 侧向冲击载荷下钢管混凝土结构的动力响应及参数分析[J]. 爆炸与冲击,2023, 43(11): 112203. doi: 10.11883/bzycj-2023-0039
    [6]
    余同希,田岚仁,朱凌. 强脉冲载荷作用下结构塑性大变形的最大挠度直接预测[J]. 力学学报,2023, 55(5): 1113-1123. doi: 10.6052/0459-1879-22-607
    [7]
    郭君,张文启,郭建军,等. 水下爆炸冲击波作用下单向加筋板的大挠度塑性变形[J]. 兵工学报,2015, 36(S1): 163-168.
    [8]
    张新春,王俊瑜,汪玉林,等. 基于膜力因子法的方形锂离子电池冲击动力响应研究[J]. 应用数学和力学,2022, 43(11): 1203-1213.
    [9]
    YU T X, STRONGE W J. Large deflections of a rigid-plastic beam-on-foundation from impact[J]. International Journal of Impact Engineering, 1990, 9(1): 115-126. doi: 10.1016/0734-743X(90)90025-Q
    [10]
    杨桂通. 弹塑性力学引论[M]. 北京: 清华大学出版社,2004: 55-58.
    [11]
    YOUNGDAHL C K. Correlation parameters for eliminating the effect of pulse shape on dynamic plastic deformation[J]. Journal of Applied Mechanics, 1970, 37(3): 744-752.
    [12]
    ZHU L, TIAN L R, CHEN F L, et al. A new equivalent method for complex-shaped pulse loading based on saturation analysis and membrane factor method[J]. International Journal of Impact Engineering, 2021, 158: 104018. doi: 10.1016/j.ijimpeng.2021.104018
    [13]
    REID S R, YU T X, YANG J L, et al. Dynamic elastic-plastic behaviour of whipping pipes: experiments and theoretical model[J]. International Journal of Impact Engineering, 1996, 18(7-8): 703-733. doi: 10.1016/S0734-743X(96)00034-6
    [14]
    张荣. 建筑用圆钢管构件侧向冲击响应及失效机理[D]. 哈尔滨: 哈尔滨工业大学,2018.
    [15]
    FURNES O, AMDAHL J. Ship collisions with offshore platforms[C]. In: Proceedings of Intermaritec, Hamburg, Germany; 1980; 310–318.
    [16]
    余同希,邱信明. 冲击动力学[M]. 北京: 清华大学出版社,2011: 199.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (30) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return