Citation: | Qian Hao, Chen Guangliang, Sun Dabin, Li Jinchao, Yin Xinli, Zhang Lixuan, Zhang Yuhang, Li Rui. Prediction of Thermal-Hydraulic Parameters in Rod Bundle Assembly Domain Based on Similarity Features[J]. Nuclear Power Engineering, 2025, 46(S1): 26-32. doi: 10.13832/j.jnpe.2025.S1.0026 |
[1] |
CONNER M E, HASSAN Y A, DOMINGUEZ-ONTIVEROS E E. Hydraulic benchmark data for PWR mixing vane grid[J]. Nuclear Engineering and Design, 2013, 264: 97-102. doi: 10.1016/j.nucengdes.2012.12.001
|
[2] |
BHATTACHARJEE S, RICCIARDI G, VIAZZO S. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics[J]. Nuclear Engineering and Design, 2017, 317: 22-43. doi: 10.1016/j.nucengdes.2017.03.011
|
[3] |
CHANG S K, MOON S K, BAEK W P, et al. Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices[J]. Nuclear Engineering and Design, 2008, 238: 600-609. doi: 10.1016/j.nucengdes.2007.02.037
|
[4] |
NGUYEN T, HASSAN Y. Stereoscopic particle image velocimetry measurements of flow in a rod bundle with a spacer grid and mixing vanes at a low Reynolds number[J]. International Journal of Heat and Fluid Flow, 2017, 67: 202-219. doi: 10.1016/j.ijheatfluidflow.2017.08.011
|
[5] |
QU W H, XIONG J B, CHEN S L, et al. High-fidelity PIV measurement of cross flow in 5×5 rod bundle with mixing vane grids[J]. Nuclear Engineering and Design, 2019, 344: 131-143. doi: 10.1016/j.nucengdes.2019.01.021
|
[6] |
YU H, WANG M J, CAI R, et al. Development and validation of boron diffusion model in nuclear reactor core subchannel analysis[J]. Annals of Nuclear Energy, 2019, 130: 208-217. doi: 10.1016/j.anucene.2019.02.046
|
[7] |
JU H R, WANG M J, CHEN C, et al. Numerical study on the turbulent mixing in channel with Large Eddy Simulation (LES) using spectral element method[J]. Nuclear Engineering and Design, 2019, 348: 169-176. doi: 10.1016/j.nucengdes.2019.04.017
|
[8] |
Qi P, Li X, Qiu F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047.
|
[9] |
MOORTHI A, SHARMA A K, VELUSAMY K. A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions[J]. Nuclear Engineering and Design, 2018, 332: 329-344. doi: 10.1016/j.nucengdes.2018.03.012
|
[10] |
WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
|
[11] |
CHEN G L, WANG J J, ZHANG Z J, et al. Distributed-parallel CFD computation for all fuel assemblies in PWR core[J]. Annals of Nuclear Energy, 2020, 141: 107340. doi: 10.1016/j.anucene.2020.107340
|
[12] |
韩浪,冉旭,单建强,等. 人工神经网络在棒束临界热流密度预测中的应用[J]. 原子能科学技术,2006, 40(3): 257-261. doi: 10.3969/j.issn.1000-6931.2006.03.001
|
[13] |
AYODEJI A, AMIDU M A, OLATUBOSUN S A, et al. Deep learning for safety assessment of nuclear power reactors: reliability, explainability, and research opportunities[J]. Progress in Nuclear Energy, 2022, 151: 104339. doi: 10.1016/j.pnucene.2022.104339
|
[14] |
曾聿赟,刘井泉,杨春振,等. 基于机器学习的小型核反应堆系统状态预测方法[J]. 核动力工程,2018, 39(1): 117-121.
|
[15] |
KAROUTA Z, GU C Y, SCHOELIN B. 3-D flow analyses for design of nuclear fuel spacer[C]//Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-7). La Grange Park: American Nuclear Society, 1995: 3153-3174.
|
[16] |
NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5×5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
|
[17] |
CHEN G L, ZHANG Z J, TIAN Z F, et al. Challenge analysis and schemes design for the CFD simulation of PWR[J]. Science and Technology of Nuclear Installations, 2017, 2017(1): 5695809.
|