Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Qian Hao, Chen Guangliang, Sun Dabin, Li Jinchao, Yin Xinli, Zhang Lixuan, Zhang Yuhang, Li Rui. Prediction of Thermal-Hydraulic Parameters in Rod Bundle Assembly Domain Based on Similarity Features[J]. Nuclear Power Engineering, 2025, 46(S1): 26-32. doi: 10.13832/j.jnpe.2025.S1.0026
Citation: Qian Hao, Chen Guangliang, Sun Dabin, Li Jinchao, Yin Xinli, Zhang Lixuan, Zhang Yuhang, Li Rui. Prediction of Thermal-Hydraulic Parameters in Rod Bundle Assembly Domain Based on Similarity Features[J]. Nuclear Power Engineering, 2025, 46(S1): 26-32. doi: 10.13832/j.jnpe.2025.S1.0026

Prediction of Thermal-Hydraulic Parameters in Rod Bundle Assembly Domain Based on Similarity Features

doi: 10.13832/j.jnpe.2025.S1.0026
  • Received Date: 2025-03-01
  • Rev Recd Date: 2025-05-12
  • Publish Date: 2025-07-09
  • To accurately predict the thermal-hydraulic parameters of reactor core flow domains under high Reynolds numbers and complex geometries, and to enhance the predictive accuracy of neural networks for rapid assessment of core thermal-hydraulic conditions, this study proposes a novel auxiliary prediction method. An analysis of detailed simulation results of rod bundle channels under various operating conditions identified a similarity pattern between the macroscopic thermal-hydraulic parameters of the rod bundle assemblies and the distribution of fine-scale parameters. This pattern was then utilized to construct the input features of the neural network, enabling precise predictions of temperature, pressure, and velocity parameters. The results demonstrate that the developed surrogate model achieves a maximum mean squared error (MSE) of 7.86×10−4 and a minimum MSE of 1.39×10−4 on macroscopic parameter test data. For fine-scale parameter test data, the maximum and minimum MSE are 9.39×10−3 and 5.20×10−4, respectively, indicating the model’s high accuracy in predicting core thermal-hydraulic conditions. Moreover, the surrogate model obtains fine-scale thermal-hydraulic parameter fields of the core within 0.504 seconds—an efficiency improvement of 1149 times compared to traditional methods. This provides a powerful technical foundation for developing digital twins of nuclear reactor cores.

     

  • loading
  • [1]
    CONNER M E, HASSAN Y A, DOMINGUEZ-ONTIVEROS E E. Hydraulic benchmark data for PWR mixing vane grid[J]. Nuclear Engineering and Design, 2013, 264: 97-102. doi: 10.1016/j.nucengdes.2012.12.001
    [2]
    BHATTACHARJEE S, RICCIARDI G, VIAZZO S. Comparative study of the contribution of various PWR spacer grid components to hydrodynamic and wall pressure characteristics[J]. Nuclear Engineering and Design, 2017, 317: 22-43. doi: 10.1016/j.nucengdes.2017.03.011
    [3]
    CHANG S K, MOON S K, BAEK W P, et al. Phenomenological investigations on the turbulent flow structures in a rod bundle array with mixing devices[J]. Nuclear Engineering and Design, 2008, 238: 600-609. doi: 10.1016/j.nucengdes.2007.02.037
    [4]
    NGUYEN T, HASSAN Y. Stereoscopic particle image velocimetry measurements of flow in a rod bundle with a spacer grid and mixing vanes at a low Reynolds number[J]. International Journal of Heat and Fluid Flow, 2017, 67: 202-219. doi: 10.1016/j.ijheatfluidflow.2017.08.011
    [5]
    QU W H, XIONG J B, CHEN S L, et al. High-fidelity PIV measurement of cross flow in 5×5 rod bundle with mixing vane grids[J]. Nuclear Engineering and Design, 2019, 344: 131-143. doi: 10.1016/j.nucengdes.2019.01.021
    [6]
    YU H, WANG M J, CAI R, et al. Development and validation of boron diffusion model in nuclear reactor core subchannel analysis[J]. Annals of Nuclear Energy, 2019, 130: 208-217. doi: 10.1016/j.anucene.2019.02.046
    [7]
    JU H R, WANG M J, CHEN C, et al. Numerical study on the turbulent mixing in channel with Large Eddy Simulation (LES) using spectral element method[J]. Nuclear Engineering and Design, 2019, 348: 169-176. doi: 10.1016/j.nucengdes.2019.04.017
    [8]
    Qi P, Li X, Qiu F, et al. Application of particle image velocimetry measurement technique to study pulsating flow in a rod bundle channel[J]. Experimental Thermal and Fluid Science, 2020, 113: 110047.
    [9]
    MOORTHI A, SHARMA A K, VELUSAMY K. A review of sub-channel thermal hydraulic codes for nuclear reactor core and future directions[J]. Nuclear Engineering and Design, 2018, 332: 329-344. doi: 10.1016/j.nucengdes.2018.03.012
    [10]
    WANG M J, WANG Y J, TIAN W X, et al. Recent progress of CFD applications in PWR thermal hydraulics study and future directions[J]. Annals of Nuclear Energy, 2021, 150: 107836. doi: 10.1016/j.anucene.2020.107836
    [11]
    CHEN G L, WANG J J, ZHANG Z J, et al. Distributed-parallel CFD computation for all fuel assemblies in PWR core[J]. Annals of Nuclear Energy, 2020, 141: 107340. doi: 10.1016/j.anucene.2020.107340
    [12]
    韩浪,冉旭,单建强,等. 人工神经网络在棒束临界热流密度预测中的应用[J]. 原子能科学技术,2006, 40(3): 257-261. doi: 10.3969/j.issn.1000-6931.2006.03.001
    [13]
    AYODEJI A, AMIDU M A, OLATUBOSUN S A, et al. Deep learning for safety assessment of nuclear power reactors: reliability, explainability, and research opportunities[J]. Progress in Nuclear Energy, 2022, 151: 104339. doi: 10.1016/j.pnucene.2022.104339
    [14]
    曾聿赟,刘井泉,杨春振,等. 基于机器学习的小型核反应堆系统状态预测方法[J]. 核动力工程,2018, 39(1): 117-121.
    [15]
    KAROUTA Z, GU C Y, SCHOELIN B. 3-D flow analyses for design of nuclear fuel spacer[C]//Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics (NURETH-7). La Grange Park: American Nuclear Society, 1995: 3153-3174.
    [16]
    NAVARRO M A, SANTOS A A C. Evaluation of a numeric procedure for flow simulation of a 5×5 PWR rod bundle with a mixing vane spacer[J]. Progress in Nuclear Energy, 2011, 53(8): 1190-1196. doi: 10.1016/j.pnucene.2011.08.002
    [17]
    CHEN G L, ZHANG Z J, TIAN Z F, et al. Challenge analysis and schemes design for the CFD simulation of PWR[J]. Science and Technology of Nuclear Installations, 2017, 2017(1): 5695809.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (4) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return