Citation: | Li Fanchen, Zheng Youqi, Wang Xiayu, Wang Shidi. Research on the Application of SARAX in the Design of Marine Heat Pipe Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 58-65. doi: 10.13832/j.jnpe.2025.S1.0058 |
[1] |
伍赛特. 核动力装置应用于民用商船的可行性分析研究[J]. 中国水运,2018, 18(10): 97-98.
|
[2] |
GIBSON M A, MASON L S, BOWMAN C, et al. Kilopower, NASA's small fission power system for science and human exploration[C]//Proceedings of the 12th International Energy Conversion Engineering Conference. Cleveland: AIAA, 2014.
|
[3] |
余红星,马誉高,张卓华,等. 热管冷却反应堆的兴起和发展[J]. 核动力工程,2019, 40(4): 1-8.
|
[4] |
POSTON D I. The heatpipe-operated mars exploration reactor (HOMER)[J]. AIP Conference Proceedings, 2001, 552(1): 797-804.
|
[5] |
EL-GENK M S, TOURNIER J P. "SAIRS"—scalable amtec integrated reactor space power system[J]. Progress in Nuclear Energy, 2004, 45(1): 25-69. doi: 10.1016/j.pnucene.2004.08.002
|
[6] |
EL-GENK M S, TOURNIER J M. Conceptual design of HP-STMCs space reactor power system for 110 kWe[J]. AIP Conference Proceedings, 2004, 699(1): 658-672.
|
[7] |
LEVINSKY A, VAN WYK J J, ARAFAT Y, et al. Westinghouse eVinciTM reactor for off-grid markets[C]//American Nuclear Society Winter Meeting 2018. Orlando:American Nuclear Society, 2018.
|
[8] |
DU X N, TAO Y S, ZHENG Y Q, et al. Reactor core design of UPR-s: a nuclear reactor for silence thermoelectric system NUSTER[J]. Nuclear Engineering and Design, 2021, 383: 111404.
|
[9] |
WU Y Q, ZHENG Y Q, TAO Y S, et al. The low-enriched uranium core design of a MW heat pipe cooled reactor[J]. Nuclear Engineering and Design, 2023, 404: 112195. doi: 10.1016/j.nucengdes.2023.112195
|
[10] |
ZHENG Y Q, DU X N, XU Z T, et al. SARAX: a new code for fast reactor analysis part I: methods[J]. Nuclear Engineering and Design, 2018, 340: 421-430.
|
[11] |
ZHENG Y Q, QIAO L, ZHAI Z A, et al. SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification[J]. Nuclear Engineering and Design, 2018, 331: 41-53. doi: 10.1016/j.nucengdes.2018.02.033
|
[12] |
DU X N, ZHENG Y Q, WANG Y P, et al. Validation of SARAX code system using the SFR operational tests[J]. Annals of Nuclear Energy, 2020, 147: 107744.
|
[13] |
DU X N, CAO L Z, ZHENG Y Q, et al. A hybrid method to generate few-group cross sections for fast reactor analysis[J]. Journal of Nuclear Science and Technology, 2018, 55(8): 931-944.
|
[14] |
ZHOU S C, WU H C, CAO L Z, et al. LAVENDER: a steady-state core analysis code for design studies of accelerator driven subcritical reactors[J]. Nuclear Engineering and Design, 2014, 278: 434-444. doi: 10.1016/j.nucengdes.2014.07.027
|
[15] |
TOSHI S. Japan’s experimental fast reactor JOYO MK-I core: sodium-cooled uranium-plutonium mixed oxide fueled fast core surrounded by UO2 blanket[Z]. USA: Argonne National Lab (ANL), 2006.
|
[16] |
ISHIKAWA M. ZPPR17A experiment: a 650 MWe-class sodium-cooled mox-fueled FBR axial heterogeneous core mock-up critical experiment with central internal blanket zone[Z]. USA: Argonne National Lab (ANL), 2006.
|
[17] |
PONOMAREV A, MIKITYUK K, ZHANG L, et al. Superphénix benchmark Part I: results of static neutronics[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8(1): 011320. doi: 10.1115/1.4051449
|
[18] |
苏著亭,杨继材,柯国土. 空间核动力[M]. 上海: 上海交通大学出版社,2016: 214.
|
[19] |
洪兵. 锂热管冷却空间反应堆堆芯物理特性研究[D]. 合肥: 中国科学技术大学,2018.
|
[20] |
EL-GENK M S, TOURNIER J M. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J]. Journal of Nuclear Materials, 2005, 340(1): 93-112. doi: 10.1016/j.jnucmat.2004.10.118
|
[21] |
杨文斗. 反应堆材料学[M]. 北京: 原子能出版社,2000: 305.
|
[22] |
TIAN Z X, ZHANG J R, WANG C L, et al. Experimental evaluation on heat transfer limits of sodium heat pipe with screen mesh for nuclear reactor system[J]. Applied Thermal Engineering, 2022, 209: 118296. doi: 10.1016/j.applthermaleng.2022.118296
|
[23] |
吴宏春. 核反应堆物理[M]. 北京: 原子能出版社,2014: 104.
|