Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Yu Xin, Wang Jiajun, Guo Kailun, Zhang Zeqin, Tian Wenxi, Su Guanghui, Qiu Suizheng. Single-channel Temperature Prediction of Heat Pipe Reactor Based on Deep Neural Network[J]. Nuclear Power Engineering, 2025, 46(S1): 75-81. doi: 10.13832/j.jnpe.2025.S1.0075
Citation: Yu Xin, Wang Jiajun, Guo Kailun, Zhang Zeqin, Tian Wenxi, Su Guanghui, Qiu Suizheng. Single-channel Temperature Prediction of Heat Pipe Reactor Based on Deep Neural Network[J]. Nuclear Power Engineering, 2025, 46(S1): 75-81. doi: 10.13832/j.jnpe.2025.S1.0075

Single-channel Temperature Prediction of Heat Pipe Reactor Based on Deep Neural Network

doi: 10.13832/j.jnpe.2025.S1.0075
  • Received Date: 2024-09-13
  • Rev Recd Date: 2025-01-20
  • Publish Date: 2025-07-09
  • Heat pipe reactors have become a strong candidate for nuclear power generation due to their unique design and efficient heat conduction performance. However, accurate monitoring of the core temperature field remains a key challenge. This paper explores a novel method for rapid prediction of the core temperature field based on deep learning technology. By establishing a backpropagation neural network (BPNN) model and training a large amount of core numerical simulation data, it is possible to predict the temperature field of a single channel core section using 6 temperature measurement points. The training results of the model show that selecting the appropriate number of neurons and hidden layers can effectively improve prediction accuracy and reduce the risk of overfitting. The neural network model in this study has an average absolute error of 1.06 K on the test set, demonstrating good predictive ability and a low level of error. Errors are primarily concentrated in corner fuel rods and regions with intense heat exchange.

     

  • loading
  • [1]
    马誉高,刘旻昀,余红星,等. 热管冷却反应堆核热力耦合研究[J]. 核动力工程,2020, 41(4): 191-196. doi: 10.13832/j.jnpe.2020.04.0191.
    [2]
    薛秀丽,杨红义,杨福昌. 中国实验快堆堆芯出口区域温度监测点布置计算验证[J]. 原子能科学技术,2008, 42(5): 428-433.
    [3]
    BAE J W, RYKHLEVSKII A, CHEE G, et al. Deep learning approach to nuclear fuel transmutation in a fuel cycle simulator[J]. Annals of Nuclear Energy, 2020, 139: 107230. doi: 10.1016/j.anucene.2019.107230
    [4]
    李仕鲜,刘井泉,沈永刚. 基于神经网络方法的LOCA事故诊断[J]. 核技术,2017, 40(8): 080604.
    [5]
    刘振海,齐飞鹏,周毅,等. 基于机器学习的燃料棒温度分布代理模型构建方法研究[J]. 核动力工程,2023, 44(S2): 1-5. doi: 10.13832/j.jnpe.2023.S2.0001.
    [6]
    胡攀,陈立新,王立鹏,等. 热管冷却反应堆燃料组件稳态热分析[J]. 现代应用物理,2013, 4(4): 374-378.
    [7]
    RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. doi: 10.1038/323533a0
    [8]
    陈小前,罗世彬,王振国,等. BP神经网络应用中的前后处理过程研究[J]. 系统工程理论与实践,2002, 22(1): 65-70,88. doi: 10.3321/j.issn:1000-6788.2002.01.010.
    [9]
    ZHAO W P, LI J C, ZHAO J, et al. Research on evaporation duct height prediction based on back propagation neural network[J]. IET Microwaves, Antennas & Propagation, 2020, 14(13): 1547-1554. DOI: 10.1049/iet-map.2019.1136.
    [10]
    徐德江,史泽林,罗海波. 零均值归一化互相关跟踪算法特性研究[C]//第九届全国光电技术学术交流会论文集(下册). 北京: 中国航天科工集团公司,2010: 9-13.
    [11]
    黄颖,顾长贵,杨会杰. 神经网络超参数优化的删除垃圾神经元策略[J]. 物理学报,2022, 71(16): 160501.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (4) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return