Citation: | Zhu Zhizhou, Tong Lili, Cao Xuewu. Study on Modified Diffusion Layer Wall Condensation Model Considering Suction Effect[J]. Nuclear Power Engineering, 2025, 46(S1): 95-102. doi: 10.13832/j.jnpe.2025.S1.0095 |
[1] |
XING J, SONG D Y, WU Y X. HPR1000: advanced pressurized water reactor with active and passive safety[J]. Engineering, 2016, 2(1): 79-87. doi: 10.1016/J.ENG.2016.01.017
|
[2] |
MARTÍN-VALDEPEÑAS J M, JIMÉNEZ M A, MARTÍN-FUERTES F, et al. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code[J]. Heat and Mass Transfer, 2005, 41(11): 961-976. doi: 10.1007/s00231-004-0606-5
|
[3] |
BUCCI M, AMBROSINI W, FORGIONE N. Experimental and computational analysis of steam condensation in the presence of air and helium[J]. Nuclear Technology, 2013, 181(1): 115-132. doi: 10.13182/NT13-A15761
|
[4] |
ZSCHAECK G, FRANK T, BURNS A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases[J]. Nuclear Engineering and Design, 2014, 279: 137-146. doi: 10.1016/j.nucengdes.2014.03.007
|
[5] |
DEHBI A, JANASZ F, BELL B. Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach[J]. Nuclear Engineering and Design, 2013, 258: 199-210. doi: 10.1016/j.nucengdes.2013.02.002
|
[6] |
BIRD B R, STEWART W E, LIGHTFOOT E N. Transport Phenomena[M]. 2nd ed. New York, USA: John Wiley & Sons Inc. , 2002:543-551.
|
[7] |
BIAN H Z, SUN Z G, ZHANG N, et al. A new modified diffusion boundary layer steam condensation model in the presence of air under natural convection conditions[J]. International Journal of Thermal Sciences, 2019, 145: 105948. doi: 10.1016/j.ijthermalsci.2019.05.004
|
[8] |
WANG D, CAO X. Numerical analysis of different break direction effect on hydrogen behavior in containment during a hypothetical LOCA[J]. Annals of Nuclear Energy, 2017, 110: 856-864. doi: 10.1016/j.anucene.2017.06.054
|
[9] |
JIANG X W, STUDER E, KUDRIAKOV S. A simplified model of passive containment cooling system in a CFD code[J]. Nuclear Engineering and Design, 2013, 262: 579-588. doi: 10.1016/j.nucengdes.2013.06.010
|
[10] |
SHIH T H, LIOU W W, SHABBIR A. A new k- ϵ eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
|
[11] |
LI Y B, ZHANG H, XIAO J J, et al. Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using GASFLOW-MPI[J]. Annals of Nuclear Energy, 2018, 114: 1-10. doi: 10.1016/j.anucene.2017.11.047
|
[12] |
BENTEBOULA S, DABBENE F. Modeling of wall condensation in the presence of noncondensable light gas[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119313. doi: 10.1016/j.ijheatmasstransfer.2020.119313
|
[13] |
PARK I W, YANG S H, LEE Y G. Degradation of condensation heat transfer on a vertical cylinder by a light noncondensable gas mixed with air-steam mixtures[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105779. doi: 10.1016/j.icheatmasstransfer.2021.105779
|
[14] |
BUCCI M. Experimental and computational analysis of condensation phenomena for the thermal-hydraulic analysis of LWRs containments[D]. Pisa, Italy: University of Pisa, 2009.
|