Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Gao Jiehao, Du Xianan, Chen Wenjie, Zheng Youqi. Fine Rod Power Calculation and Verification for the Entire Lifetime of a Small Lead-Bismuth Fast Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 181-191. doi: 10.13832/j.jnpe.2025.S1.0181
Citation: Gao Jiehao, Du Xianan, Chen Wenjie, Zheng Youqi. Fine Rod Power Calculation and Verification for the Entire Lifetime of a Small Lead-Bismuth Fast Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 181-191. doi: 10.13832/j.jnpe.2025.S1.0181

Fine Rod Power Calculation and Verification for the Entire Lifetime of a Small Lead-Bismuth Fast Reactor

doi: 10.13832/j.jnpe.2025.S1.0181
  • Received Date: 2024-12-19
  • Rev Recd Date: 2025-02-27
  • Publish Date: 2025-07-09
  • Small lead-bismuth fast reactors, due to their compact design, impose higher requirements on reactor physics analysis codes. This paper explores the methodology of full-life cycle fine rod power calculations for the SVBR-100 small Lead-Bismuth fast reactor. The results show that for this type of reactor core, the two-step method code needs to consider the power distribution information in assembly (shape factor) obtained during the assembly homogenization process when performing fine rod power calculations. Additionally, the calculation of the shape factor must account for the influence of assembly layout and material information. Based on the above calculation method, this paper applies the SARAX from the Nuclear Engineering Computational Physics Laboratory (NECP) of Xi'an Jiaotong University to perform entire lifetime cycle fine rod power calculations for the SVBR-100 reactor core and compares the results with those from the Monte Carlo code. The calculation results demonstrate that SARAX achieves high accuracy in entire lifetime cycle fine rod power calculations for small lead-bismuth fast reactors. This work establishes a foundation for subsequent code applications in small lead-bismuth fast reactor core design and high-resolution calculations of multiphysics coupling.

     

  • loading
  • [1]
    吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识,2018, 30(4): 35-39.
    [2]
    WALLENIUS J, SUVDANTSETSEG E, FOKAU A. ELECTRA: European lead-cooled training reactor[J]. Nuclear Technology, 2012, 177(3): 303-313. doi: 10.13182/NT12-A13477
    [3]
    HONG S G, GREENSPAN E, KIM Y I. The encapsulated nuclear heat source (ENHS) reactor core design[J]. Nuclear Technology, 2005, 149(1): 22-48. doi: 10.13182/NT05-A3577
    [4]
    SMITH C F, HALSEY W G, BROWN N W, et al. SSTAR: The US lead-cooled fast reactor (LFR)[J]. Journal of Nuclear Materials, 2008, 376(3): 255-259. doi: 10.1016/j.jnucmat.2008.02.049
    [5]
    CHOI S, CHO J H, BAE M H, et al. PASCAR: long burning small modular reactor based on natural circulation[J]. Nuclear Engineering and Design, 2011, 241(5): 1486-1499. doi: 10.1016/j.nucengdes.2011.03.005
    [6]
    SHIN Y H, CHOI S, CHO J, et al. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation[J]. Progress in Nuclear Energy, 2015, 83: 433-442. doi: 10.1016/j.pnucene.2015.01.002
    [7]
    袁显宝,曹良志,吴宏春. 铅铋冷却氮化物燃料小型模块化快中子反应堆堆芯物理特性分析[J]. 核技术,2017, 40(10): 100603.
    [8]
    刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720
    [9]
    ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025
    [10]
    ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. SVBR-100 module-type fast reactor of the IV generation for regional power industry[J]. Journal of Nuclear Materials, 2011, 415(3): 237-244. doi: 10.1016/j.jnucmat.2011.04.038
    [11]
    International Atomic Energy Agency. Status of small reactor designs without on-site refueling: IAEA-TECDOC-1536[R]. Vienna: IAEA, 2007.
    [12]
    DERSTINE K L. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems: ANL-82-64[R]. Argonne: Argonne National Laboratory, USA, 1984.
    [13]
    ADAMS C H. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations: ANL-76-21[R]. Argonne National Laboratory, USA, 1976.
    [14]
    MAO L, ZMIJAREVIC I. A new Tone’s method in APOLLO3® and its application to fast and thermal reactor calculations[J]. Nuclear Engineering and Technology, 2017, 49(6): 1269-1286. doi: 10.1016/j.net.2017.08.002
    [15]
    徐李,马大园,施工,等. 快堆三维六角形节块法输运计算研究[J]. 原子能科学技术,2013, 47(2): 161-165. doi: 10.7538/yzk.2013.47.02.0161
    [16]
    WEI L F, ZHENG Y Q, DU X N, et al. Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis[J]. Annals of Nuclear Energy, 2022, 165: 108664. doi: 10.1016/j.anucene.2021.108664
    [17]
    WEI L F, ZHENG Y Q, DU X N, et al. Extension of SARAX code system for reactors with intermediate spectrum[J]. Nuclear Engineering and Design, 2020, 370: 110883.
    [18]
    ZHENG Y Q, DU X N, XU Z T, et al. SARAX: a new code for fast reactor analysis part I: methods[J]. Nuclear Engineering and Design, 2018, 340: 421-430.
    [19]
    ZHENG Y Q, QIAO L, ZHAI Z A, et al. SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification[J]. Nuclear Engineering and Design, 2018, 331: 41-53. doi: 10.1016/j.nucengdes.2018.02.033
    [20]
    路瑶,杜夏楠,李爱鑫,等. 液态金属冷却快堆堆芯物理分析软件LoongSARAX的验证与确认[J]. 原子能科学技术,2024, 58(3): 549-562. doi: 10.7538/yzk.2023.youxian.0478
    [21]
    陈建达. 装载六角形组件堆芯的精细功率计算方法研究及程序开发与应用[D]. 西安: 西安交通大学,2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(8)

    Article Metrics

    Article views (4) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return