Citation: | Gao Jiehao, Du Xianan, Chen Wenjie, Zheng Youqi. Fine Rod Power Calculation and Verification for the Entire Lifetime of a Small Lead-Bismuth Fast Reactor[J]. Nuclear Power Engineering, 2025, 46(S1): 181-191. doi: 10.13832/j.jnpe.2025.S1.0181 |
[1] |
吴宜灿. 铅基反应堆研究进展与应用前景[J]. 现代物理知识,2018, 30(4): 35-39.
|
[2] |
WALLENIUS J, SUVDANTSETSEG E, FOKAU A. ELECTRA: European lead-cooled training reactor[J]. Nuclear Technology, 2012, 177(3): 303-313. doi: 10.13182/NT12-A13477
|
[3] |
HONG S G, GREENSPAN E, KIM Y I. The encapsulated nuclear heat source (ENHS) reactor core design[J]. Nuclear Technology, 2005, 149(1): 22-48. doi: 10.13182/NT05-A3577
|
[4] |
SMITH C F, HALSEY W G, BROWN N W, et al. SSTAR: The US lead-cooled fast reactor (LFR)[J]. Journal of Nuclear Materials, 2008, 376(3): 255-259. doi: 10.1016/j.jnucmat.2008.02.049
|
[5] |
CHOI S, CHO J H, BAE M H, et al. PASCAR: long burning small modular reactor based on natural circulation[J]. Nuclear Engineering and Design, 2011, 241(5): 1486-1499. doi: 10.1016/j.nucengdes.2011.03.005
|
[6] |
SHIN Y H, CHOI S, CHO J, et al. Advanced passive design of small modular reactor cooled by heavy liquid metal natural circulation[J]. Progress in Nuclear Energy, 2015, 83: 433-442. doi: 10.1016/j.pnucene.2015.01.002
|
[7] |
袁显宝,曹良志,吴宏春. 铅铋冷却氮化物燃料小型模块化快中子反应堆堆芯物理特性分析[J]. 核技术,2017, 40(10): 100603.
|
[8] |
刘紫静,赵鹏程,张斌,等. 超长寿命小型自然循环铅铋快堆堆芯概念设计研究[J]. 原子能科学技术,2020, 54(7): 1254-1265. doi: 10.7538/yzk.2019.youxian.0720
|
[9] |
ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. Innovative nuclear technology based on modular multi-purpose lead-bismuth cooled fast reactors[J]. Progress in Nuclear Energy, 2008, 50(2-6): 170-178. doi: 10.1016/j.pnucene.2007.10.025
|
[10] |
ZRODNIKOV A V, TOSHINSKY G I, KOMLEV O G, et al. SVBR-100 module-type fast reactor of the IV generation for regional power industry[J]. Journal of Nuclear Materials, 2011, 415(3): 237-244. doi: 10.1016/j.jnucmat.2011.04.038
|
[11] |
International Atomic Energy Agency. Status of small reactor designs without on-site refueling: IAEA-TECDOC-1536[R]. Vienna: IAEA, 2007.
|
[12] |
DERSTINE K L. DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems: ANL-82-64[R]. Argonne: Argonne National Laboratory, USA, 1984.
|
[13] |
ADAMS C H. SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations: ANL-76-21[R]. Argonne National Laboratory, USA, 1976.
|
[14] |
MAO L, ZMIJAREVIC I. A new Tone’s method in APOLLO3® and its application to fast and thermal reactor calculations[J]. Nuclear Engineering and Technology, 2017, 49(6): 1269-1286. doi: 10.1016/j.net.2017.08.002
|
[15] |
徐李,马大园,施工,等. 快堆三维六角形节块法输运计算研究[J]. 原子能科学技术,2013, 47(2): 161-165. doi: 10.7538/yzk.2013.47.02.0161
|
[16] |
WEI L F, ZHENG Y Q, DU X N, et al. Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis[J]. Annals of Nuclear Energy, 2022, 165: 108664. doi: 10.1016/j.anucene.2021.108664
|
[17] |
WEI L F, ZHENG Y Q, DU X N, et al. Extension of SARAX code system for reactors with intermediate spectrum[J]. Nuclear Engineering and Design, 2020, 370: 110883.
|
[18] |
ZHENG Y Q, DU X N, XU Z T, et al. SARAX: a new code for fast reactor analysis part I: methods[J]. Nuclear Engineering and Design, 2018, 340: 421-430.
|
[19] |
ZHENG Y Q, QIAO L, ZHAI Z A, et al. SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification[J]. Nuclear Engineering and Design, 2018, 331: 41-53. doi: 10.1016/j.nucengdes.2018.02.033
|
[20] |
路瑶,杜夏楠,李爱鑫,等. 液态金属冷却快堆堆芯物理分析软件LoongSARAX的验证与确认[J]. 原子能科学技术,2024, 58(3): 549-562. doi: 10.7538/yzk.2023.youxian.0478
|
[21] |
陈建达. 装载六角形组件堆芯的精细功率计算方法研究及程序开发与应用[D]. 西安: 西安交通大学,2021.
|