Citation: | Dai Ming, Cheng Maosong. Development and Validation of Assembly Calculation Module in 3D Neutron Transport Code for Molten Salt Reactors[J]. Nuclear Power Engineering, 2025, 46(S1): 192-199. doi: 10.13832/j.jnpe.2025.S1.0192 |
[1] |
陈亮,朱贵凤,王子业,等. 基于熔盐堆尾气提取的99Mo生产评估[J]. 核技术,2024, 47(8): 080604. doi: 10.11889/j.0253-3219.2024.hjs.47.080604
|
[2] |
刘宙宇,许晓北,温兴坚,等. 确定论数值反应堆程序NECP-X的开发及应用[J]. 原子能科学技术,2022, 56(2): 226-238. doi: 10.7538/yzk.2021.youxian.0930
|
[3] |
张宏博,赵晨,彭星杰,等. 数字化反应堆高保真中子学程序SHARK研发[J]. 原子能科学技术,2022, 56(2): 334-342. doi: 10.7538/yzk.2021.youxian.0902
|
[4] |
俞陆林,杨高升,陈国华,等. 基于GPU加速的三维堆芯物理程序STORK的开发与验证[J]. 原子能科学技术,2024, 58(3): 662-671. doi: 10.7538/yzk.2023.youxian.0657
|
[5] |
FEI T, FENG B, HEIDET F. Molten salt reactor core simulation with PROTEUS[J]. Annals of Nuclear Energy, 2020, 140: 107099. doi: 10.1016/j.anucene.2019.107099
|
[6] |
ZHANG A, DAI M, CHENG M S, et al. High-fidelity neutronics simulation of channel-type molten salt reactors[J]. Nuclear Engineering and Design, 2023, 401: 112063. doi: 10.1016/j.nucengdes.2022.112063
|
[7] |
DAI M, CHENG M S. A low order MOC-based synthetic acceleration scheme of the MOC neutron transport method for molten salt reactors[J]. Annals of Nuclear Energy, 2024, 208: 110789. doi: 10.1016/j.anucene.2024.110789
|
[8] |
GRAHAM A M, TAYLOR Z, COLLINS B S, et al. Multiphysics coupling methods for molten salt reactor modeling and simulation in VERA[J]. Nuclear Science and Engineering, 2021, 195(10): 1065-1086. doi: 10.1080/00295639.2021.1901000
|
[9] |
DAI M, ZHANG A, CHENG M S. Improvement of the 3D MOC/DD neutron transport method with thin axial meshes[J]. Annals of Nuclear Energy, 2023, 185: 109731. doi: 10.1016/j.anucene.2023.109731
|
[10] |
ZHANG A, DAI M, CHENG M S, et al. Development of a GPU-based three-dimensional neutron transport code[J]. Annals of Nuclear Energy, 2022, 174: 109156. doi: 10.1016/j.anucene.2022.109156
|
[11] |
戴明,张奥,程懋松. 基于非均匀谱修正方法的熔盐堆少群截面计算[J]. 核动力工程,2024, 45(5): 62-70.
|
[12] |
戴明,张奥,程懋松. ESSM和Tone方法在熔盐堆共振计算中的适用性分析[J]. 核技术,2022, 45(9): 090605.
|
[13] |
DAI M, CHENG M S. Application of material-mesh algebraic collapsing acceleration technique in method of characteristics-based neutron transport code[J]. Nuclear Science and Techniques, 2021, 32(8): 95-109.
|
[14] |
SALINO V, HÉBERT A. PyNjoy2016: an open source system for producing cross sections libraries for DRAGON5 and SERPENT2[C]//M&C 2023 - The International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Niagara Falls, Canada: ANS, 2023: 1-10.
|
[15] |
ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
|
[16] |
HÉBERT A. Application of Tone's and embedded self-shielding methods to pressurized water reactor assemblies[J]. Annals of Nuclear Energy, 2018, 112: 439-449. doi: 10.1016/j.anucene.2017.10.031
|
[17] |
张广春,刘杰,YANG W S. PROTEUS-MOC在TREAT试验堆稳态中子学计算中的应用[J]. 核技术,2020, 43(4): 040008. doi: 10.11889/j.0253-3219.2020.hjs.43.040008
|
[18] |
LIU Y F, YAN R, ZOU Y, et al. Sensitivity/uncertainty comparison and similarity analysis between TMSR-LF1 and MSR models[J]. Progress in Nuclear Energy, 2020, 122: 103289. doi: 10.1016/j.pnucene.2020.103289
|