Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Ding Wenjie, Huang Hongwen, Guo Haibing, Gao Jiao, Wang Shaohua, Ma Jimin. Study on Evolution Mechanism for Local Melting Accident of Dispersed Plate Fuel[J]. Nuclear Power Engineering, 2025, 46(S1): 213-219. doi: 10.13832/j.jnpe.2025.S1.0213
Citation: Ding Wenjie, Huang Hongwen, Guo Haibing, Gao Jiao, Wang Shaohua, Ma Jimin. Study on Evolution Mechanism for Local Melting Accident of Dispersed Plate Fuel[J]. Nuclear Power Engineering, 2025, 46(S1): 213-219. doi: 10.13832/j.jnpe.2025.S1.0213

Study on Evolution Mechanism for Local Melting Accident of Dispersed Plate Fuel

doi: 10.13832/j.jnpe.2025.S1.0213
  • Received Date: 2025-01-15
  • Rev Recd Date: 2025-03-28
  • Publish Date: 2025-06-15
  • To understand the evolution process of plate fuel melting accident and prevent the continuous core fuel melting, the typical plate fuel research reactor JRR-3M was used as the research object, and the volume of fluid (VOF) method was coupled with enthalpy-porosity method to simulate the local melting and melt migration process of dispersed plate fuel after adjacent flow channels were blocked. The simulation results show that the evolution process of local melting accident is divided into four stages: temperature rise, melting, migration and solidification. Among them, the migration stage is extremely short and lasts less than 3 s, but it has a decisive influence on the accident expansion. In the migration stage, the melt migrates to the adjacent fuel plate in two ways: bottom gathering and middle droplet sputtering, and begins to solidify after being fully cooled by the adjacent fuel plate. After the high-temperature melt contacts the adjacent fuel plate, the temperature of the adjacent fuel plate cooling wall will rise rapidly to 500~600 K, far exceeding the boiling point of the coolant, which poses a burnout risk to the adjacent fuel plate. The established simulation method and the obtained simulation results can provide support for the safety analysis of plate fuel core melting accident.

     

  • loading
  • [1]
    TAESUNG H A. Hydraulic studies of the 18-plate assembly in the mcmaster nuclear reactor[D]. Hamilton: McMaster University, 2002.
    [2]
    KELLER F R. Fuel element flow blockage in the engineering test reactor[Z]. Washington: United States Atomic Energy Commission, 1962.
    [3]
    SIMS T M, TABOR W H. Report on fuel-plate melting at the oak ridge research reactor[Z]. Oak Ridge: Oak Ridge National Laboratory (ORNL), 1964.
    [4]
    李健全,陈晓明,李金才. 板状燃料堆芯流道阻塞事故分析[J]. 原子能科学技术,2002, 36(1): 76-79. doi: 10.3969/j.issn.1000-6931.2002.01.018
    [5]
    BINFORD F T, COLE T E, CRAMER E N. The high flux isotope reactor accidentanalysis[Z]. U,S.,Oak Ridge: Oak Ridge National Laboratory (ORNL), 1967.
    [6]
    KIM S H, TALEYARKHAN R P, NAVARRO-VALENTI S, et al. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at oak ridge national laboratory[Z]. Oak Ridge: Oak Ridge National Laboratory (ORNL), 1995.
    [7]
    刘天才,金华晋,袁履正. 中国先进研究堆堵流事故分析[J]. 核动力工程,2006, 27(S2): 32-35,44.
    [8]
    ALBATI M A, AL-YAHIA O S, PARK J, et al. Thermal hydraulic analyses of JRR-3: Code-to-code comparison of COOLOD-N2 and TMAP[J]. Progress in Nuclear Energy, 2014, 71: 1-8. doi: 10.1016/j.pnucene.2013.10.015
    [9]
    HIRT C W, NICHOLS B D. Volume of Fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [10]
    VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1720. doi: 10.1016/0017-9310(87)90317-6
    [11]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [12]
    CABEZA L F. Advances in thermal energy storage systems[M]. 2nd ed. Amsterdam: Elsevier, 2020: 366.
    [13]
    丁文杰,王少华,高娇,等. 板状燃料组件流道部分堵塞的安全边界研究[J]. 强激光与粒子束,2022, 34(5): 056003.
    [14]
    HASSELMAN D P H, JOHNSON L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6): 508-515. doi: 10.1177/002199838702100602
    [15]
    OHSHIMA H. Effective viscosity of a concentrated suspension of uncharged porous spheres[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347(1-3): 33-37.
    [16]
    丁文杰,郭海兵,王少华,等. 高功率脉冲加热条件下燃料模块流动传热特性研究[J]. 原子能科学技术,2017, 51(12): 2118-2124. doi: 10.7538/yzk.2017.51.12.2118
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (7) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return