Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Wang Yifeng, Peng Tianji, Fan Xukai, Tian Wangsheng, Tang Yanze, Meng Haiyan. Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment[J]. Nuclear Power Engineering, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228
Citation: Wang Yifeng, Peng Tianji, Fan Xukai, Tian Wangsheng, Tang Yanze, Meng Haiyan. Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment[J]. Nuclear Power Engineering, 2025, 46(S1): 228-236. doi: 10.13832/j.jnpe.2025.S1.0228

Numerical Study on Corrosion and Heat Transfer Coupling Characteristics of Heat Exchange Tube in LBE Environment

doi: 10.13832/j.jnpe.2025.S1.0228
  • Received Date: 2024-01-03
  • Rev Recd Date: 2025-01-20
  • Available Online: 2025-07-09
  • Publish Date: 2025-06-15
  • In order to study the phenomenon of oxidation corrosion in LBE heat exchange tube and the effect of oxide layer growth on heat transfer, this study simulates the corrosion and heat transfer process of LBE heat exchange tube in 9500 hours based on the oxidation corrosion model, mass transfer controlled corrosion model and oxide layer thermal resistance model by using the FLUENT in combination with the user-defined function (UDF). The results show that after 9500 hours of operation under baseline conditions, the average thickness of the magnetite and spinel layers reached 23.84 μm and 25.02 μm, respectively. Due to the additional thermal resistance introduced by the oxide layer growth, the average thermal resistance of the wall increased by 7.8%, and the wall temperature and outlet temperature of the heat exchange tube increased by 0.26 K and 0.2 K, respectively. The lower the inlet temperature, the smaller the thickness of the oxide layer is. However, the oxide layer thickness gradually increases with time, indicating that the oxidation layer growth process plays a dominant role compared to the removal process. The lower the inlet oxygen concentration, the smaller the thickness of the oxide layer is. When the oxygen concentration is reduced to 10−7 wt%, the magnetite layer at the inlet of the heat exchange tube appears local dissolution, and the scope of dissolution gradually expands. The spinel layer, on the other hand, continues to grow after exposure to LBE due to low removal rate and provides the main protection for the structural material.

     

  • loading
  • [1]
    彭天骥,顾龙,王大伟,等. 中国加速器驱动嬗变研究装置次临界反应堆概念设计[J]. 原子能科学技术,2017, 51(12): 2235-2241. doi: 10.7538/yzk.2017.51.12.2235
    [2]
    ZHANG J S, LI N. Review of the studies on fundamental issues in LBE corrosion[J]. Journal of Nuclear Materials, 2008, 373(1-3): 351-377. doi: 10.1016/j.jnucmat.2007.06.019
    [3]
    MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [4]
    FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
    [5]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I)[J]. Corrosion Science, 2008, 50(9): 2523-2536. doi: 10.1016/j.corsci.2008.06.050
    [6]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [7]
    MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [8]
    陆定晟,王琛,王成龙,等. 卧式铅铋堆芯氧化腐蚀特性研究[J]. 核动力工程,2023, 44(3): 96-103.
    [9]
    SCHROER C, WEDEMEYER O, SKRYPNIK A, et al. Corrosion kinetics of Steel T91 in flowing oxygen-containing lead–bismuth eutectic at 450℃[J]. Journal of Nuclear Materials, 2012, 431(1-3): 105-112. doi: 10.1016/j.jnucmat.2011.11.014
    [10]
    TSISAR V, SCHROER C, WEDEMEYER O, et al. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550℃ to flowing Pb-Bi eutectic with 10−7 mass% dissolved oxygen[J]. Journal of Nuclear Materials, 2017, 494: 422-38. doi: 10.1016/j.jnucmat.2017.07.031
    [11]
    TIAN S, JIANG Z, LUO L. Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500℃[J]. Materials and Corrosion, 2016, 67(12): 1274-1285. doi: 10.1002/maco.201609075
    [12]
    ZHANG H P, LIU X D, XU Y C, et al. Comparison investigation on corrosion of SIMP and T91 steels exposed to liquid LBE at 450℃: the role of Si on reducing oxidation rate[J]. Corrosion Science, 2023, 225: 111553. doi: 10.1016/j.corsci.2023.111553
    [13]
    BALBAUD-CÉLÉRIER F, BARBIER F. Investigation of models to predict the corrosion of steels in flowing liquid lead alloys[J]. Journal of Nuclear Materials, 2001, 289(3): 227-242. doi: 10.1016/S0022-3115(01)00431-7
    [14]
    FAZIO C. Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition[M]. Paris: OECD, 2016.
    [15]
    NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead-bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
    [16]
    TEDMON JR C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys[J]. Journal of the Electrochemical Society, 1966, 113(8): 766. doi: 10.1149/1.2424115
    [17]
    MARINO A, LIM J, KEIJERS S, et al. A mass transfer correlation for packed bed of lead oxide spheres in flowing lead–bismuth eutectic at high Péclet numbers[J]. International Journal of Heat and Mass Transfer, 2015, 80: 737-747. doi: 10.1016/j.ijheatmasstransfer.2014.09.079
    [18]
    CHENG X, TAK N I. Investigation on turbulent heat transfer to lead-bismuth eutectic flows in circular tubes for nuclear applications[J]. Nuclear Engineering and Design, 2006, 236(4): 385-393. doi: 10.1016/j.nucengdes.2005.09.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (6) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return