Advance Search
Volume 46 Issue S1
Jul.  2025
Turn off MathJax
Article Contents
Guo Xin, Xu Ning, Hao Chen, Yin Wen, Wang Yizhen. Development and Verification of Doppler Broadening Module in Nuclear Data Processing Code[J]. Nuclear Power Engineering, 2025, 46(S1): 242-249. doi: 10.13832/j.jnpe.2025.S1.0242
Citation: Guo Xin, Xu Ning, Hao Chen, Yin Wen, Wang Yizhen. Development and Verification of Doppler Broadening Module in Nuclear Data Processing Code[J]. Nuclear Power Engineering, 2025, 46(S1): 242-249. doi: 10.13832/j.jnpe.2025.S1.0242

Development and Verification of Doppler Broadening Module in Nuclear Data Processing Code

doi: 10.13832/j.jnpe.2025.S1.0242
  • Received Date: 2024-11-01
  • Rev Recd Date: 2025-02-14
  • Publish Date: 2025-06-15
  • In order to meet the numerical simulation of various operating conditions in nuclear reactors, it is necessary to provide cross-section data at different temperature. However, the cross sections provided in the evaluated nuclear data library are the data at 0 K. Therefore, in order to meet the needs of core physics numerical simulation calculations, it is necessary to perform Doppler broadening processing based on the evaluated nuclear data in the evaluated nuclear data library to obtain continuous energy pointwise cross sections at different temperatures. Through the Kernel Broadening accurate Doppler broadening calculation method, the theoretical derivation and code development of the Doppler broadening calculation method have been completed. Based on the CENDL-3.2 evaluated nuclear data library, the broadening cross sections at different temperatures are calculated based on the doppler_broad module developed in this paper and the BROADR module in the NJOY2016, respectively, and a computational analysis is performed to verify the rationality of some convergence parameters in the Doppler broadening calculation process. The numerical results indicate that for the four temperature points of 293.6 K, 600 K, 900 K and 108 K, the calculation results in this paper are in good agreement with the NJOY2016 calculation results. The value of the NMAX parameter, which determines the limit of adjacent broadening energy points, has a significant impact on the broadening cross sections. The maximum relative deviation of the broadening cross sections for different values is 1.091%.

     

  • loading
  • [1]
    李松阳,王侃,余纲林. 中子核截面在线多普勒展宽方法研究[J]. 原子能科学技术,2013, 47(3): 337-342. doi: 10.7538/yzk.2013.47.03.0337
    [2]
    Cullen, D.E., Weisbin, C.R., 1976. Exact Doppler broadening of tabulated cross sections. Nucl. Sci. Eng. 60 (3), 199–229.
    [3]
    李松阳. 在线多普勒展宽与核截面处理方法研究[D]. 北京: 清华大学,2012.
    [4]
    TRUMBULL H T. Treatment of nuclear data for transport problems containing detailed temperature distributions[J]. Nuclear Technology, 2006, 156(1): 75-86. doi: 10.13182/NT156-75
    [5]
    CONLIN J L, JI W, LEE J C, et al. Pseudo material construct for coupled neutronic-thermal-hydraulic analysis of VHTGR[J]. Transactions of the American Nuclear Society, 2005, 92(1): 225-227.
    [6]
    YESILYURT G. Advanced Monte Carlo methods for analysis of very high temperature reactors: On-the-Fly Doppler broadening and Deterministic/Monte Carlo methods[D]. Ann Arbor: University of Michigan, 2009.
    [7]
    李松阳, 王侃, 余纲林. 中子截面Doppler展宽算法及并行计算方法[J]. 清华大学学报(自然科学版), 2012, 52(04): 523-526.
    [8]
    MCCARTNEY A, CONLIN J L, REHN D. NJOY21: a successor to the NJOY nuclear data processing system[J]. Transactions of the American Nuclear Society, 2016, 114(1): 500-503.
    [9]
    Dunn, M.E., Greene, N.M., 2002. AMPX-2000: a cross-section processing system for generating nuclear data for criticality safety applications. Trans. Am. Nucl. Soc. 86, 118–119.
    [10]
    LEE C, YANG W S. MC2-3: multigroup cross section generation code for fast reactor analysis[J]. Nuclear Science and Engineering, 2017, 187(3): 268-290. doi: 10.1080/00295639.2017.1320893
    [11]
    COSTE-DELCLAUX M, JOUANNE C, MOUNIER C. Current status of the verification and processing system GALILÉE-1 for Evaluated Data[J]. EPJ Web of Conferences, 2023, 284: 14007. doi: 10.1051/epjconf/202328414007
    [12]
    CULLEN D E. PREPRO 2021: ENDF/B Preprocessing codes[R]. Vienna: IAEA, 2021.
    [13]
    Kenichi Tada, Yasunobu Nagaya, Satoshi Kunieda, et al. Development and verification of a new nuclear data processing system FRENDY[J]. Journal of Nuclear Science and Techology, 54, 806-817.
    [14]
    Tiejun Zu, Jialong Xu, Yongqiang Tang, et al. NECP-Atlas: A new nuclear data processing code[J]. Annals of Nuclear Energy, 2019, 123: 153-161.
    [15]
    刘萍, 吴小飞, 李松阳, 等. 群常数制作软件Ruler研发[J]. 原子能科学技术, 2018, 52(07): 1153-1159.
    [16]
    余健开, 李松阳, 王侃, 等. 反应堆用核截面处理程序RXSP的研发与验证[J]. 核动力工程,2013, 34(S1): 10-13.
    [17]
    Kui Hu, Xubo Ma, Xuan Ma, et al. Development and verification of a new nuclear data processing code AXSP[J]. Frontiers in Energy Research. 10, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (12) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return