Citation: | Li Yaodong, Yu Ganglin, Wang Kan. Research on Multi-Group Constant with Discrete Angle and SPH Method Based on RMC[J]. Nuclear Power Engineering, 2025, 46(S1): 269-275. doi: 10.13832/j.jnpe.2025.S1.0269 |
[1] |
REDMOND II E L. Multigroup cross section generation via Monte Carlo methods[D]. Cambridge: Massachusetts Institute of Technology, 1997.
|
[2] |
POUNDERS J M. Stochastically generated multigroup diffusion coefficients[D]. Atlanta: Georgia Institute of Technology, 2006.
|
[3] |
LEPPÄNEN J. On the use of the continuous-energy Monte Carlo method for lattice physics applications[C]//2009 International Nuclear Atlantic Conference. Rio de Janeiro: INAC, 2009: 1-16.
|
[4] |
SHIM H J, CHO J Y, SONG J S, et al. Generation of few group diffusion theory constants by Monte Carlo code[J]. Transactions of the American Nuclear Society, 2008, 99: 343-345.
|
[5] |
LIU S C, SHE D, LIANG J G, et al. Development of random geometry capability in RMC code for stochastic media analysis[J]. Annals of Nuclear Energy, 2015, 85: 903-908. doi: 10.1016/j.anucene.2015.07.008
|
[6] |
袁媛. 基于RMC的在线均匀化方法研究及应用[D]. 北京:清华大学,2020.
|
[7] |
冯致远. 基于RMC的等效均匀化群常数及截面参数化研究[D]. 北京: 清华大学,2022.
|
[8] |
HÉBERT A, BENOIST P. A consistent technique for the global homogenization of a pressurized water reactor assembly[J]. Nuclear Science and Engineering, 1991, 109(4): 360-372. doi: 10.13182/NSE109-360
|
[9] |
LEPPÄNEN J, PUSA M, FRIDMAN E. Overview of methodology for spatial homogenization in the Serpent 2 Monte Carlo code[J]. Annals of Nuclear Energy, 2016, 96: 126-136. doi: 10.1016/j.anucene.2016.06.007
|