Citation: | Xiao Yong, Zhou Xiafeng. Physics-Informed Neural Network Methods for Solving Eigenvalue Problems in Neutron Diffusion Equations[J]. Nuclear Power Engineering, 2025, 46(S1): 288-295. doi: 10.13832/j.jnpe.2025.S1.0288 |
[1] |
吴文斌,于颖锐,向宏志,等. 基于大规模并行计算的三维多群中子扩散方程有限差分方法[J]. 强激光与粒子束,2017, 29(8): 086001. doi: 10.11884/HPLPB201729.160328
|
[2] |
GE J, ZHANG D L, TIAN W X, et al. Steady and transient solutions of neutronics problems based on finite volume method (FVM) with a CFD code[J]. Progress in Nuclear Energy, 2015, 85: 366-374. doi: 10.1016/j.pnucene.2015.07.012
|
[3] |
CIARLET Jr P, GIRET L, JAMELOT E, et al. Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52(5): 2003-2035. doi: 10.1051/m2an/2018011
|
[4] |
ZHOU X F, LI F. Jacobian-free Newton-Krylov nodal expansion methods with physics-based preconditioner and local elimination for three-dimensional and multigroup k-eigenvalue problems[J]. Nuclear Science and Engineering, 2018, 190(3): 238-257. doi: 10.1080/00295639.2018.1435136
|
[5] |
刘东,罗琦,唐雷,等. 基于PINN深度机器学习技术求解多维中子学扩散方程[J]. 核动力工程,2022, 43(2): 1-8.
|
[6] |
ELHAREEF M H, WU Z Y. Physics-informed neural network method and application to nuclear reactor calculations: a pilot study[J]. Nuclear Science and Engineering, 2023, 197(4): 601-622. doi: 10.1080/00295639.2022.2123211
|
[7] |
XIE Y C, WANG Y H, MA Y, et al. Neural network based deep learning method for multi-dimensional neutron diffusion problems with novel treatment to boundary[J]. Journal of Nuclear Engineering, 2021, 2(4): 533-552. doi: 10.3390/jne2040036
|
[8] |
YANG Y, GONG H L, ZHANG S Q, et al. A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems[J]. Annals of Nuclear Energy, 2023, 183: 109656. doi: 10.1016/j.anucene.2022.109656
|
[9] |
WANG J Y, PENG X J, CHEN Z, et al. Surrogate modeling for neutron diffusion problems based on conservative physics-informed neural networks with boundary conditions enforcement[J]. Annals of Nuclear Energy, 2022, 176: 109234. doi: 10.1016/j.anucene.2022.109234
|
[10] |
YANG Q H, YANG Y, DENG Y T, et al. Physics-constrained neural network for solving discontinuous interface K-eigenvalue problem with application to reactor physics[J]. Nuclear Science and Techniques, 2023, 34(10): 161. doi: 10.1007/s41365-023-01313-0
|
[11] |
BUCHAN A G, PAIN C C, FANG F, et al. A POD reduced‐order model for eigenvalue problems with application to reactor physics[J]. International Journal for Numerical Methods in Engineering, 2013, 95(12): 1011-1032. doi: 10.1002/nme.4533
|
[12] |
DE MOURA MENESES A A, ARAUJO L M, NAST F N, et al. Application of metaheuristics to Loading Pattern Optimization problems based on the IAEA-3D and BIBLIS-2D data[J]. Annals of Nuclear Energy, 2018, 111: 329-339. doi: 10.1016/j.anucene.2017.09.008
|