ALE Finite Element Formulation for Fluid-Structure Problems
-
摘要: 基于任意Lagrange-Euler描述(ALE),建立了分析流-固耦合问题的预报-更正算法。采用ALE描述下的Galerkin/最小二乘有限元法,完成了对具有运动边界的不可压缩粘性流的数值模拟;并提出基于更新Lagrange列式的伪弹性体法来计算网格运动;通过在耦合界面上对流体和固体分别施加Dirichlet和Neumann边界条件,建立了流-固耦合关系,并数值模拟了流道中与流速垂直的悬臂梁的流-固耦合过程,数值算例的结果验证了本文方法的有效性。
-
关键词:
- 流-固耦合 /
- 任意Lagrange-Euler描述 /
- Galerkin/最小二乘有限元 /
- 网格更新 /
- 预报-更正算法
Abstract: Based on the arbitrary Lagrange-Euler description the prediction–correction algorithm is presented for analyzing the fluid–structure interaction problems. The Galerkin/Least squares finite element method in ALE form is employed to simulate the incompressible viscous flow with large boundary motions, and the pseudo–elasticity method on the basis of the updated Lagrangian formulation is proposed to calculate the mesh motion. The coupling condition is established by applying Dirichlet and Neumann boundary conditions to the fluid and solid domains, respectively. Then the coupling process of a cantilever beam perpendicular to the flow in a channel is analyzed numerically, and the numerical results demonstrate the validity of the method proposed. -
计量
- 文章访问数: 5
- HTML全文浏览量: 2
- PDF下载量: 0
- 被引次数: 0