Simultaneous Solution of Neutronics/Thermal-Hydraulic Coupled System Based on Nonlinear Preconditioned JFNK Method
-
摘要: 利用Jacobian-free Newton-Krylov(JFNK)方法联立求解中子-热工耦合问题,采用非线性预处理方式,以避免求解非线性残差,使得JFNK具有可以充分利用原有的中子-热工计算程序,易于实现"黑箱"耦合的特点。对非线性预处理的相关性质进行分析,同时对非线性预处理与线性预处理的区别与联系以及计算效率进行理论分析。以二维简化中子-热工耦合模型作为算例,对比非线性预处理/线性预处理JFNK方法、传统耦合求解方法的计算效率。结果表明:非线性预处理/线性预处理JFNK方法的计算效率比传统方法具有明显优势,线性预处理的计算效率高于非线性预处理。
-
关键词:
- 中子-热工耦合 /
- Jacobian-free Newton-Krylov方法 /
- 非线性预处理方法 /
- 线性预处理方法
Abstract: The Jacobian-free Newton-Krylov method is utilized to solve the Neutronics/ Thermal-Hydraulic coupled system in nuclear reactors. Nonlinear preconditioning is employed to avoid the nonlinear residuals, take full advantage of the original codes and couple these codes as black boxes. The basic property of nonlinear preconditioning is analyzed. The difference and connection between nonlinear and linear preconditioning are presented. The numerical results show that the nonlinear/linear preconditioned JFNK methods are more efficient than the traditional method for 3 cases of a 2-D simplified reactor model. Further more, the computational efficiency of linear preconditioned JFNK is better than that of nonlinear preconditioned JFNK. -
计量
- 文章访问数: 87
- HTML全文浏览量: 26
- PDF下载量: 1
- 被引次数: 0