高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ATF用ODS-FeCrAl管材的耐腐蚀性能研究

李静 吴飒建 杨英 熊良银 马海滨 刘实

李静, 吴飒建, 杨英, 熊良银, 马海滨, 刘实. ATF用ODS-FeCrAl管材的耐腐蚀性能研究[J]. 核动力工程, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119
引用本文: 李静, 吴飒建, 杨英, 熊良银, 马海滨, 刘实. ATF用ODS-FeCrAl管材的耐腐蚀性能研究[J]. 核动力工程, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119
Li Jing, Wu Sajian, Yang Ying, Xiong Liangyin, Ma Haibin, Liu Shi. Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF[J]. Nuclear Power Engineering, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119
Citation: Li Jing, Wu Sajian, Yang Ying, Xiong Liangyin, Ma Haibin, Liu Shi. Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF[J]. Nuclear Power Engineering, 2021, 42(4): 119-125. doi: 10.13832/j.jnpe.2021.04.0119

ATF用ODS-FeCrAl管材的耐腐蚀性能研究

doi: 10.13832/j.jnpe.2021.04.0119
基金项目: 沈阳市双百工程重大科技研发课题(Y17-0-022);事故容错燃料研发项目(TF15AM-RL-PS-000003)
详细信息
    作者简介:

    李 静(1976—),女,副研究员,博士研究生,主要从事ODS铁基合金及其管材的研制工作,E-mail: jingli@imr.ac.cn

  • 中图分类号: TL341

Study on Corrosion Resistance of ODS-FeCrAl Tube for ATF

  • 摘要: 针对尺寸为Φ9.5 mm×0.3 mm的氧化物弥散强化(ODS)-FeCrAl管材在360℃/18.6 MPa/100 d静态水溶液、360℃/18.6 MPa/1200 ppm B+2.2 ppm Li/100 d(1 ppm=10−6)动态水溶液、1200℃/0.1 MPa/8 h水蒸气中的腐蚀行为进行研究,利用扫描电镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)等检测方法,分析管材表面氧化膜形貌、组织结构和元素分布。结果表明,360 ℃水溶液中极低的氧浓度使得ODS-FeCrAl管材在静态和动态水溶液的腐蚀产物主要是Fe3O4,质量增重分别为0.036 mg/cm2和0.36 mg/cm2,氧化膜厚度分别为管壁厚度的0.072%和0.72%;1200℃水蒸气腐蚀时,高温和充足的氧含量促使管材表面生成平均厚度为2.34 μm的α-Al2O3膜,延缓基体进一步氧化;腐蚀后的氧化膜表面和截面未发现开裂、孔洞等缺陷。与Zr-4管材参比试样相比,ODS-FeCrAl管材表现出优异的高温抗氧化、抗腐蚀性能。

     

  • 图  1  2种管材经360℃静态水溶液腐蚀100 d的增重曲线    

    Figure  1.  Weight Gain Curves of TwoTubes in Static Water at 360℃ for 100 Days

    图  2  SM-14管经360℃静态水腐蚀100 d后的产物

    Figure  2.  Corrosion Product on SM-14 Tube in Static Water at 360℃ for 100 Days

    图  3  SM-14管经360℃静态水腐蚀100 d后的XPS和XRD谱图    

    元素浓度单位为质量百分比,下同

    Figure  3.  XPS and XRD Patternsof SM-14 Tube Corroded in 360℃ Static Water for 100 Days

    图  4  2种管材经360℃动态水溶液腐蚀100 d的增重曲线    

    Figure  4.  Weight Gain Curves of Two Tubes in Flowing Aqueous Solution at 360℃ for 100 Days

    图  5  SM-14管经360℃动态水腐蚀100 d后的产物

    Figure  5.  Corrosion Product on SM-14 Tube in Flowing Aqueous Solutionat 360℃ for 100 Days

    图  6  SM-14管经360℃动态水腐蚀100 d后的XPS和XRD谱图    

    Figure  6.  XPS and XRD Patternsof SM-14 Tube Corroded in Flowing Aqueous Solution at 360℃ for 100 Days

    图  7  2种管材经1200℃水蒸气腐蚀8 h后的形貌

    Figure  7.  Morphologies of Two Tubes Corroded in Steam at 1200℃ for 8 Hours

    图  8  SM-14管经1200℃水蒸气腐蚀8 h后的表面形貌

    1 —在晶粒内;2、3 —晶界

    Figure  8.  Surface Morphology for SM-14 Tube after Steam Corrosionat 1200℃ for 8 Hours

    图  9  SM-14管经1200℃水蒸气腐蚀8 h后截面形貌及成分分析   

    图9a中白框为面扫区域

    Figure  9.  Morphology and Composition of Cross Section for SM-14 Tube after Steam Corrosion at 1200℃ for 8 Hours

    图  10  SM-14管1200 ℃水蒸气腐蚀8 h后的XRD谱图

    Figure  10.  XRD Pattern of SM-14 Tube Corrodedin Steam at 1200℃ for 8 Hours

    表  1  360℃静态水腐蚀表面产物EDS分析结果

    Table  1.   EDS Analysis Results of Surface Products after Static Water Corrosion at 360℃

    元素质量百分比/%原子百分比/%
    O27.2255.62
    Al2.272.75
    Cr8.275.20
    Fe62.2436.43
    下载: 导出CSV

    表  2  360℃动态水腐蚀表面产物EDS分析结果

    Table  2.   EDS Analysis Results of Surface Products after Flowing Aqueous Solution Corrosion at 360℃

    元素质量百分比/%原子百分比/%
    O31.9561.89
    Al0.450.52
    Cr1.811.08
    Fe65.7936.51
    下载: 导出CSV

    表  3  1200℃水蒸气腐蚀8 h后表面产物EDS分析结果

    Table  3.   EDS Analysis Results of Surface Products after Steam Corrosion at 1200℃ for 8 h

    位置点元素质量百分比/%原子百分比/%
    1O38.4854.96
    Al45.2338.41
    Ti0.090.04
    Cr3.121.38
    Fe12.074.95
    Y1.010.26
    2O48.8863.69
    Al44.3333.76
    Ti0.200.09
    Cr1.550.61
    Fe5.041.85
    3O50.5768.00
    Al29.4323.46
    Ti12.395.57
    Cr1.430.59
    Fe6.182.38
    下载: 导出CSV
  • [1] TERRANI K A. Accident tolerant fuel cladding development: Promise, status, and challenges[J]. Journal of Nuclear and Materials, 2018(501): 13-30.
    [2] DRYEPONDT S, UNOCIC K A, HOELZER D T. et al Development of low-Cr ODS FeCrAl alloys for accident-tolerant fuel cladding[J]. Journal of Nuclear Materials, 2018(501): 59-71.
    [3] PINT B A, UNOCIC K A. Steam oxidation evaluation of Fe-Cr alloys for accident tolerant nuclear fuel cladding[J]. Oxidation of Metals, 2017, 87(1-2): 515-526.
    [4] WU S, LI J, LI W, et al. Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS-FeCrAl alloys[J]. Journal of Alloys and Compounds, 2020(814): 152282.
    [5] 李静, 吴飒建, 葛鹏, 等. 一种高温水蒸气腐蚀试验装置: 中国, ZL 201920633267.2[P]. 2020-03-31.
    [6] LIU T, WANG C, SHEN H, et al. The effects of Cr and Al concentrations on the oxidation behavior of oxide dispersion strengthened ferritic alloys[J]. Corrosion Science, 2013(76): 310-316.
    [7] BRIANT C L, LUTHRA K L. Surface segregation in MCrAIY alloys[J]. Metallurgical Transactions A, 1988, 19(8): 2099-2108. doi: 10.1007/BF02645212
    [8] CHEN R Y, YEUN W Y D. Review of the high-temperature oxidation of Iron and carbon steels in air or oxygen[J]. Oxidation of Metals, 2003, 59(5/6): 433-468. doi: 10.1023/A:1023685905159
    [9] KUANG W, WU X, HAN E H. Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water[J]. Corrosion Science, 2012(63): 259-266.
    [10] 周邦新,李强,姚美意,等. 锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J]. 核动力工程,2005, 26(4): 364-371. doi: 10.3969/j.issn.0258-0926.2005.04.014
    [11] VANKEERBERGHEN M, WEYNS G, GAVRILOV S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions[J]. Journal of Nuclear Materials, 2009(384): 274-285.
    [12] TERRANI K A, PINT B A, KIM Y J, et al. Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. Journal of Nuclear Materials, 2016(479): 36-47.
    [13] HORITA T, YAMAJI K, YOKOKAWA H, et al. Effects of Si and Al concentrations in Fe–Cr alloy on the formation of oxide scales in H2-H2O[J]. International Journal of Hydrogen Energy, 2008(33): 6308-6315.
    [14] RAM D L, TATLOCK G J, FALKE U. Segregation of reactive elements at oxide grainboundaries in FeCrAlRE alloys[J]. Materials at High Temperatures, 2005, 22(3-4): 497-503. doi: 10.1179/mht.2005.060
    [15] MOLINS R, GERMIDIS A, ANDRIEU E. Oxidation of thin FeCrAlstrips: kinetic and microstructural studies[J]. Microscopy of Oxidation-3, 1996(16-18): 3-11.
    [16] DRYEPONDT S, TURAN J, LEONARD D, et al. Long-term oxidation testing and lifetime modelingof cast and ODS FeCrAl alloys[J]. Oxidation of Metals, 2017, 87(1-2): 215-248. doi: 10.1007/s11085-016-9668-2
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  155
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-22
  • 修回日期:  2020-06-22
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回