高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重复焊接对304不锈钢热影响区组织与性能的影响

郭彦辉 邓冬 孙造占 黄炳臣

郭彦辉, 邓冬, 孙造占, 黄炳臣. 重复焊接对304不锈钢热影响区组织与性能的影响[J]. 核动力工程, 2021, 42(4): 198-202. doi: 10.13832/j.jnpe.2021.04.0198
引用本文: 郭彦辉, 邓冬, 孙造占, 黄炳臣. 重复焊接对304不锈钢热影响区组织与性能的影响[J]. 核动力工程, 2021, 42(4): 198-202. doi: 10.13832/j.jnpe.2021.04.0198
Guo Yanhui, Deng Dong, Sun Zaozhan, Huang Bingchen. Microstructure and Mechanical Properties of Heat-affected Zone of Repeated Welding on 304 Stainless Steel[J]. Nuclear Power Engineering, 2021, 42(4): 198-202. doi: 10.13832/j.jnpe.2021.04.0198
Citation: Guo Yanhui, Deng Dong, Sun Zaozhan, Huang Bingchen. Microstructure and Mechanical Properties of Heat-affected Zone of Repeated Welding on 304 Stainless Steel[J]. Nuclear Power Engineering, 2021, 42(4): 198-202. doi: 10.13832/j.jnpe.2021.04.0198

重复焊接对304不锈钢热影响区组织与性能的影响

doi: 10.13832/j.jnpe.2021.04.0198
基金项目: 国家重点研发计划(2019YFB1900900)
详细信息
    作者简介:

    郭彦辉(1982—),男,高级工程师,主要从事核安全设备监管、核电材料性能评价、先进焊接工艺研发工作,E-mail: guoyh2005@163.com

    通讯作者:

    孙造占,E-mail: sunzaozhan@chinansc.cn

  • 中图分类号: TG442.3; TL37

Microstructure and Mechanical Properties of Heat-affected Zone of Repeated Welding on 304 Stainless Steel

  • 摘要: 采用自动钨极氩弧焊接(GTAW)工艺设计刚性约束坡口,制备了304不锈钢1次焊接和1~5次试样。采用光学显微镜、X射线衍射(XRD)、扫描电子显微镜(SEM)与电子背散射衍射(EBSD)技术对重复焊接试样的热影响区(HAZ)显微组织进行观察分析,并开展室温拉伸性能测试,研究重复焊接对显微组织与力学性能的影响。结果表明,重复焊接试样的HAZ显微组织主要由奥氏体和条状δ铁素体组成,随着重复焊接次数增加,HAZ奥氏体晶粒尺寸呈长大趋势,δ铁素体含量先减少后增加,组织择优取向由<101>转变为<111>,局域取向差逐渐增大;晶粒尺寸是影响抗拉强度和延伸率变化的主要原因,加工硬化致使试样屈服强度逐渐增加。

     

  • 图  1  焊件坡口尺寸与试样取样位置示意图

    Figure  1.  Dimensions of Welding Groove and Sampling Position of Test Specimen

    图  2  重复焊接热试样HAZ的XRD谱图

    cps—每秒计数

    Figure  2.  XRD Patterns of HAZ of Repeated Welding

    图  3  母材与1次焊接试样HAZ显微组织

    Figure  3.  Microstructures of Base Metal and HAZ in RW0

    图  4  重复焊接热影响区择优取向分布图

    Figure  4.  IPF Maps of the HAZ of RW0~RW5 Using EBSD

    图  5  重复焊接热影响区的局部取向差

    Figure  5.  Misorientation of the HAZ of Repeated Welding

    图  6  重复焊接试样的HAZ室温拉伸性能

    Figure  6.  Tensile Properties of the HAZ of Repeated Welding at Room Temperature

    图  7  重复焊接试样的HAZ硬化率-真应变曲线局部图

    Figure  7.  Enlargement of Hardening Rate-true Strain Curves of the HAZ of Repeated Welding

    图  8  重复焊接试样的HAZ拉伸断口形貌(纤维区)

    Figure  8.  Micro-Fracture of the HAZ of Repeated Welding (Fibrous Region)

    表  1  钢板化学成分与力学性能

    Table  1.   Chemical Composition and Mechanical Properties of AISI 304 Stainless Steel

    位置 化学成分/wt% 拉伸强度/MPa
    C Cr Ni Mn Si P S N 平均抗
    拉强度
    屈服
    强度
    母材 0.05 18.545 8.211 1.6 0.5 0.034 0.001 0.12 550 240
    焊材 0.023 19.111 9.303 1.56 0.543 0.026 0.006
      注:①wt%—质量百分数;②“—”—无数据
    下载: 导出CSV

    表  2  自动GTAW焊接参数

    Table  2.   Welding Parameters of Auto-GTAW

    焊道
    编号
    电流/
    A
    电压/
    V
    焊接速度/
    (mm·s−1)
    送丝速度/
    (mm·min−1)
    热输入/
    (kJ·mm−1)
    12609.501.52891.62
    22609.201.52891.57
    3~72609.501.52891.62
    下载: 导出CSV
  • [1] MILLS W J. Fracture toughness of type 304 and 316 stainless steels and their welds[J]. International Materials Reviews, 1997, 42(2): 45-82. doi: 10.1179/imr.1997.42.2.45
    [2] LANT T, ROBINSON D L, SPAFFORD B, et al. Review of weld repair procedures for low alloy steels designed to minimise the risk of future cracking[J]. International Journal of Pressure Vessels and Piping, 2001, 78(11-12): 813-818. doi: 10.1016/S0308-0161(01)00094-1
    [3] YI H J, LEE Y J, LEE K O. Influences of the welding heat input and the repeated repair welding on Ti-3Al-2.5V titanium alloy[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(6): 684-691. doi: 10.1007/s40195-015-0248-2
    [4] NASCIMENTO M P, VOORWALD H J C, FILHO J D C P. Effects of several TIG weld repairs on the axial fatigue strength of AISI 4130 aeronautical steel-welded joints[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35(3): 191-204.
    [5] AGHAALI I, FARZAM M, GOLOZAR M A, et al. The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L[J]. Materials & Design (1980-2015), 2014(54): 331-341.
    [6] LIN C M, TSAI H L, CHENG C D, et al. Effect of repeated weld-repairs on microstructure, texture, impact properties and corrosion properties of AISI 304L stainless steel[J]. Engineering Failure Analysis, 2012(21): 9-20. doi: 10.1016/j.engfailanal.2011.11.014
    [7] ASME. ASME Boiler & Pressure Vessel Code - Section 3:Rules for construction of nuclear facility components–Division 1:Subsection NB-2013[S]. New York: ASME International, 2013.
    [8] AFCEN. Design and construction rules for mechanical components of PWR Island:RCC-M-2002[S]. France: FRAMATOME, 2002.
    [9] FENG W, YANG S, YAN Y B. Dependence of grain boundary character distribution on the initial grain size of 304 austenitic stainless steel[J]. Philosophical Magazine, 2017, 97(13): 1057-1070. doi: 10.1080/14786435.2017.1288943
    [10] LIPPOLD J C, SAVAGE W F. Solidification of austenitic stainless steel weldments: Part I-A proposed mechanism[C]. U.S.: AWS 60th Annual Meeting ,Detroit, Michigan, 1979
    [11] TSENG C C, SHEN Y, THOMPSON S W, et al. Fracture and the formation of sigma phase, M23C6 and austenite from delta-ferrite in an AlSl 304L stainless steel[J]. Metallurgical and Materials Transactions A, 1994, 25(6): 1147-1158. doi: 10.1007/BF02652290
    [12] FUKUOKA C, MORISHIMA K, YOSHIZAWA H, et al. Misorientation development in grains of tensile strained and crept 2.25%Cr-1%Mo steel[J]. Scripta Materialia, 2002, 46(1): 61-66. doi: 10.1016/S1359-6462(01)01197-6
    [13] JANG C, CHO P Y, KIM M, et al. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds[J]. Materials & Design, 2010(31): 1862-1870.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  970
  • HTML全文浏览量:  342
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-23
  • 修回日期:  2021-04-18
  • 刊出日期:  2021-08-15

目录

    /

    返回文章
    返回