Numerical Analysis of Aircraft Impact on Wall of High Temperature Gas-Cooled Reactor Building and Evaporator Cavity
-
摘要: 反应堆抗大飞机撞击是需要考虑的外部事件,对反应堆的安全评价非常重要。本文在耦合冲击动力学有限元模型的基础上,提出了双层平行墙体承受飞机撞击的等效模拟方法,研究了高温气冷堆(HTGR)较薄的方形蒸发器舱室抗商用飞机撞击能力。建立了反应堆厂房外墙受商用飞机撞击穿透评价标准,并进行了商用飞机撞击反应堆厂房外墙仿真计算,得到了飞机剩余动能曲线。飞机撞击蒸发器舱室的计算中,保守假设飞机穿过外墙后无质量损失,形态完好,以剩余速度撞击方形蒸发器舱室。评估表明,蒸发器舱室结构在撞击条件下的整体损伤微小,可为保护内部关键设备提供重要的屏障功能。
-
关键词:
- 高温气冷堆(HTGR) /
- 蒸发器舱室 /
- 飞机撞击 /
- 有限元分析 /
- 动力响应
Abstract: It is necessary to consider the external event of large aircraft impact on the reactor, which is very important for the safety evaluation of the reactor. In this paper, based on the finite element model of coupled impact dynamics, an equivalent simulation method of double-layer parallel wall subjected to aircraft impact is proposed, and the impact resistance of the thin square evaporator chamber of a high-temperature gas-cooled reactor (HTGR) against commercial aircraft is studied. The external wall of the reactor building is evaluated by the impact of commercial aircraft impact penetration, and the external wall simulation of the commercial aircraft impact reactor building is carried out. Then the residual kinetic energy curve of the aircraft is obtained. The calculation of the aircraft striking the evaporator compartment assumes that the aircraft has no mass loss after passing through the outer wall and is in good shape, striking the square evaporator chamber at the remaining speed. The evaluation shows that the overall damage of the evaporator compartment structure under impact conditions is small and can provide an important barrier function for protecting the critical internal equipment. Assessment results show that the overall damage of evaporator reactor cavity structure under impact condition is small, so the cavity can provide an important barrier function for the important equipment inside it. -
表 1 钢的材料参数
Table 1. Input Parameter of Steel Material
密度/(kg·m−3) 弹性模量/GPa 泊松比 A/MPa 7850 200 0.3 400 B/MPa C m n 383 0.0114 0.94 0.45 -
[1] 国家核安全局. 核动力厂设计安全规定: HAF 102—2016[S]. 北京: 国家核安全局, 2016: 24-25. [2] NRC. Aircraft impact assessment: 10CFR50.150[R]. U. S. : NRC, 2009 [3] RIERA J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4): 415-426. doi: 10.1016/0029-5493(68)90039-3 [4] SUGANO T, TSUBOTA H, KASAI Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3): 373-385. doi: 10.1016/0029-5493(93)90119-T [5] 孔建伟,刘君. CPR1000核电厂安全壳撞击试验研究[J]. 工业建筑,2017, 47(1): 21-26. [6] 左家红. 秦山核电厂安全壳在飞机撞击下的非线性分析[J]. 核科学与工程,1992, 12(1): 35-42. [7] 徐征宇. 飞机撞击核岛屏蔽厂房的有限元分析[J]. 核科学与工程,2010, 30(S1): 309-313. [8] 林丽,陆新征,韩鹏飞,等. 大型商用飞机撞击刚性墙及核电屏蔽厂房的撞击力分析[J]. 振动与冲击,2015, 34(9): 158-163, 176. [9] 黄涛,张涛,董占发,等. 大型商用飞机撞击核安全壳的动力响应分析[J]. 振动与冲击,2018, 37(20): 8-14. [10] 张作义,吴宗鑫,王大中,等. 我国高温气冷堆发展战略研究[J]. 中国工程科学,2019, 21(1): 12-19. [11] 梁振斌,聂君锋,王海涛. 高温气冷堆舱室抗商用飞机撞击的耦合数值分析[J]. 原子能科学技术,2020, 54(2): 327-333. doi: 10.7538/yzk.2019.youxian.0142 [12] Hibbitt, Karlsson & Sorensen, Inc. ABAQUS/ Standard User’s Manuals[M]. v6.5. U. S. : HKS, 2005. [13] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范(2015年版): GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011: 209-211. [14] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326. doi: 10.1016/0020-7683(89)90050-4 [15] HAO Y F, ZHANG X H, HAO H. Numerical analysis of concrete material properties at high strain rate under direct tension[J]. Procedia Engineering, 2011(14): 336-343. doi: 10.1016/j.proeng.2011.07.042 [16] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9 [17] 张耀庭,赵璧归,李瑞鸽,等. HRB400钢筋单调拉伸及低周疲劳性能试验研究[J]. 工程力学,2016, 33(4): 121-129. [18] IAEA. Safety aspects of nuclear power plants in human induced external events: assessment of structures: No. 87[R]. Vienna: IAEA Publishing Section, 2018. [19] QU Y G, WU H, XU Z Y, et al. Safety assessment of generation Ⅲ nuclear power plant buildings subjected to commercial aircraft crash part Ⅱ: structural damage and vibrations[J]. Nuclear Engineering and Technology, 2020, 52(2): 397-416. doi: 10.1016/j.net.2019.07.015 [20] JEON S J, JIN B M, KIM Y J. Assessment of the fire resistance of a nuclear power plant subjected to a large commercial aircraft crash[J]. Nuclear Engineering and Design, 2012(247): 11-22. doi: 10.1016/j.nucengdes.2012.02.003 -