Automatic Processing and Analysis of Submerged Jet Image in Suppression Pool
-
摘要: 抑压水池中淹没射流导致的喘振现象对抑压系统的可靠性有较大影响,而气泡行为直接关系到喘振的机理。为更好地识别喘振现象中的气泡行为,本文提出了一种基于改进的分水岭图像分割算法的蒸汽淹没射流图像自动处理方法。基于像素矩阵建立微分模型,提取气泡二维信息并近似估计三维信息,进而获取射流体积变化情况。借助图像灰度方差信息,提取气泡冷凝周期。算法提高了射流气泡的识别精度。通过与人工标定比对,图像区域识别误差控制在10%以内;经验证,简化椭圆模型计算图像投影面积的相对误差较小;气泡参数与冷凝周期提取结果符合实验表征与理论规律。Abstract: The surge caused by submerged jets in the suppression pool has a major impact on the reliability of the suppression system. And the bubble behavior is directly related to the mechanism of the surge. In order to better identify the bubble behavior in the surge phenomenon, an automatic image processing method of steam submerged jet based on improved watershed image segmentation algorithm is proposed. The differential model is established based on the pixel matrix, the two-dimensional information of the bubble is extracted and the three-dimensional information is approximately estimated, and then the variation of the jet volume is obtained. The bubble condensation period is extracted by using the gray variance information of the image. The algorithm improves the identification accuracy of jet bubbles. Compared with manual calibration, the error of image area recognition is controlled within 10%; It is proved that the relative error of image projection area calculated by the simplified ellipse model is small, and the extraction results of bubble parameters and condensation period are consistent with the experimental characterization and theoretical law.
-
Key words:
- Suppression pool /
- Submerged jet /
- Direct contact condensation /
- Image algorithm
-
表 1 实验装置参数
Table 1. Experimental Device Parameters
参数名 参数值 锅炉压力/ MPa 0.3 水温/℃ 24 管口淹没深度/ cm 25 连通管径/ mm 15 高速摄影仪分辨率 1920×1080 帧率/ Fps 1000 曝光时间/μs 100 Fps—每秒传输的帧数 表 2 误差汇总
Table 2. Error Summary
流型 流量/(m3·h−1) 识别误差/% 简化为椭圆相对误差/% 包裹型 3.4 8.28 3.71 非包裹型 4.6 9.83 2.15 -
[1] 全标,蒋孝蔚,陈志辉,等. 抑压式安全壳的抑压特性研究[J]. 核动力工程,2014, 35(2): 114-117. [2] 王珏,陈力生,蔡琦,等. 小型堆非能动安全系统初步设计[J]. 核科学与工程,2020, 40(4): 581-588. doi: 10.3969/j.issn.0258-0918.2020.04.010 [3] 武心壮,郭丹丹,田林,等. 蒸汽射流凝结压力振荡幅值研究[J]. 核动力工程,2014, 35(3): 37-41. doi: 10.13832/j.jnpe.2014.03.0037 [4] 都宇,闫晓,臧金光,等. 常压条件下的小口径浸没式蒸汽直接接触冷凝流型研究[J]. 核动力工程,2021, 42(S1): 104-108. doi: 10.13832/j.jnpe.2021.S1.0104 [5] 杨立新,聂华刚,宋小明,等. 溶液堆内气-液两相流流动及换热特性数值研究[J]. 核动力工程,2009, 30(3): 85-90,130. [6] GREGU G, TAKAHASHI M, PELLEGRINI M, et al. Experimental study on steam chugging phenomenon in a vertical sparger[J]. International Journal of Multiphase Flow, 2017, 88: 87-98. doi: 10.1016/j.ijmultiphaseflow.2016.09.020 [7] QIU B B, YANG Q C, CHEN W X, et al. Theoretical analysis on bubble radius and pressure fluctuation during steam bubble condensation[J]. Progress in Nuclear Energy, 2021, 142: 104017. doi: 10.1016/j.pnucene.2021.104017 [8] 施丽莲,蔡晋辉,周泽魁. 基于图像处理的气液两相流流型识别[J]. 浙江大学学报:工学版,2005, 39(8): 1128-1131. [9] 贺雪强,刘汉周,陈德奇,等. 矩形窄流道内汽泡行为的图像自动识别与分析[J]. 核动力工程,2020, 41(2): 6-10. doi: 10.13832/j.jnpe.2020.02.0006 [10] YANG S R, SEO J, HASSAN Y A. Thermal hydraulic characteristics of unstable bubbling of direct contact condensation of steam in subcooled water[J]. International Journal of Heat and Mass Transfer, 2019, 138: 580-596. doi: 10.1016/j.ijheatmasstransfer.2019.04.065 [11] NEUBERT P, PROTZEL P. Compact watershed and preemptive SLIC: on improving trade-offs of superpixel segmentation algorithms[C]//Proceedings of 2014 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014: 996-1001. [12] KAUR M, SARKAR R K, DUTTA M K. Investigation on quality enhancement of old and fragile artworks using non-linear filter and histogram equalization techniques[J]. Optik, 2021, 244: 167564. doi: 10.1016/j.ijleo.2021.167564 [13] SONKA M, HLAVAC V, BOYLE R. 图像处理、分析与机器视觉[M]. 艾海舟, 苏延超, 译. 第三版. 北京: 清华大学出版社, 2011: 513-516. [14] 黄梦涛,连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报,2021, 42(10): 199-209. doi: 10.19650/j.cnki.cjsi.J2107914 [15] CHAN C K, LEE C K B. A regime map for direct contact condensation[J]. International Journal of Multiphase Flow, 1982, 8(1): 11-20. doi: 10.1016/0301-9322(82)90003-9 [16] LI W C, MENG Z M, WANG J J, et al. Effect of non-condensable gas on pressure oscillation of submerged steam jet condensation in condensation oscillation regime[J]. International Journal of Heat and Mass Transfer, 2018, 124: 141-149. doi: 10.1016/j.ijheatmasstransfer.2018.03.068 -