Dynamic Reliability Analysis of CRDM Pressure Shell under Multiple Failure Modes
-
摘要: 为研究控制棒驱动机构(CRDM)的结构可靠性规律,考虑CRDM承压壳体的多失效模式,根据应力强度干涉理论建立与CRDM步跃动作次数相关的结构动态可靠性模型。用顺序统计量描述强度失效模式下应力幅值的动态分布模型,基于Miner累积损伤理论和疲劳等效应力分布模型建立结构疲劳寿命和累积损伤分布与步跃冲击载荷作用次数的关系。研究结果表明,在步跃冲击载荷作用下,承压壳体前期的结构可靠度主要由强度失效模式的可靠度决定,当步跃动作达到一定次数时,疲劳失效模式的失效率开始显著增大;相对于疲劳失效模式,强度失效模式的可靠度对应力均值的变化更加敏感。该结果可对CRDM承压壳体的可靠性设计和维修管理提供参考。
-
关键词:
- 控制棒驱动机构(CRDM) /
- 应力强度干涉理论 /
- 累积损伤疲劳可靠性 /
- 动态可靠性
Abstract: To investigate the structural reliability of the control rod drive mechanism(CRDM), multiple failure modes of the CRDM pressure shell is considered, while the structural dynamic reliability model related to the CRDM step number is built by the stress-strength interference theory. The dynamic distribution model of the stress amplitude under the strength failure mode is represented by the order statistic. Based on Miner cumulative damage theory and fatigue equivalent stress distribution model, the relationship between fatigue life, cumulative damage distribution and the number of step impact loads is established. The results show that under the action of step impact load, the early structural reliability of pressure shell is mainly determined by the reliability of strength failure mode. When the step action reaches a certain number of times, the failure rate of fatigue failure mode starts to increase significantly; Compared with the fatigue failure mode, the reliability of the strength failure mode is more sensitive to the change of the mean stress.The results can provide reference for the reliability design and maintenance management of CRDM pressure shell. -
表 1 随机输入变量的分布参数
Table 1. Distribution Parameters of Random Input Variables
输入参数 均值 标准差 F/kN 80 8 d1/mm 134 0.5 D1/mm 178 0.6 d2/mm 85 0.3 D2/mm 100 0.4 d1—钩爪壳体最薄处的内径;D1—钩爪壳体最薄处的外径;d2—钩爪壳体下端内径;D2—钩爪壳体下端外径 表 2 等效应力分布参数
Table 2. Distribution Parameters of Equivalent Stress
等效应力 均值 标准差 $ {\sigma }_{1} $/MPa 45.3 4.6 $ {\sigma }_{2} $/MPa 41.5 4.3 -
[1] 沈小要. 控制棒驱动机构动态提升特性研究[J]. 核动力工程,2012, 33(1): 51-55. doi: 10.3969/j.issn.0258-0926.2012.01.011 [2] 陈成,刘锦阳,许艳涛,等. 控制棒驱动机构步跃提升碰撞的动力学建模[J]. 计算力学学报,2017, 34(3): 267-273. doi: 10.7511/jslx201703001 [3] 邓强,陈西南,刘佳,等. 磁力提升型控制棒驱动机构提升动作过程动力学分析[J]. 机械设计与制造工程,2017, 46(4): 106-110. doi: 10.3969/j.issn.2095-509X.2017.04.026 [4] 唐向东,杨博,陈西南,等. 磁力提升型控制棒驱动机构提升磁极螺纹疲劳研究[J]. 核动力工程,2013, 34(S1): 112-115. [5] 李朝君,宋维,石兴伟,等. FMEA法评估反应堆控制棒驱动机构可靠性[J]. 核电子学与探测技术,2017, 37(4): 369-372. doi: 10.3969/j.issn.0258-0934.2017.04.004 [6] 郭盛杰,姚卫星. 结构元件疲劳可靠性估算的剩余寿命模型[J]. 南京航空航天大学学报,2003, 35(1): 25-29. doi: 10.3969/j.issn.1005-2615.2003.01.005 [7] 李应波,姚卫星. 基于SFEM的结构元件疲劳可靠性分析[J]. 南京航空航天大学学报,2007, 39(4): 461-464. doi: 10.3969/j.issn.1005-2615.2007.04.010 [8] 靳慧,周奇才,张其林. 应变疲劳可靠性分析的有限元法[J]. 同济大学学报:自然科学版,2006, 34(4): 438-442. [9] 刘宇,李天翔,刘阔,等. 基于四阶矩法车削颤振可靠性研究[J]. 机械工程学报,2016, 52(20): 193-200. [10] 何铮,常华健,杨培勇,等. 核电主设备接管分析法设计一次应力可靠性分析[J]. 原子能科学技术,2017, 51(6): 1045-1050. doi: 10.7538/yzk.2017.51.06.1045 [11] 王正,谢里阳,李兵. 考虑失效相关的系统动态可靠性模型[J]. 兵工学报,2008, 29(8): 985-989. doi: 10.3321/j.issn:1000-1093.2008.08.019 [12] 王正,谢里阳,李兵. 随机载荷作用下的零件动态可靠性模型[J]. 机械工程学报,2007, 43(12): 20-25. doi: 10.3321/j.issn:0577-6686.2007.12.004 [13] ASME. ASME boiler and pressure vessel code, section III, rules for construction of nuclear power plant components, division 2: code for concrete reactor vessels and containments: ASME BPVC-III-2-2015[S]. New York: The American Society of Mechanical Engineers, 2015: 184. [14] 孙志礼, 陈良玉. 实用机械可靠性设计理论与方法[M]. 北京: 科学出版社, 2003: 79-81. -