Mechanical Behavior Analysis of Heat Pipe Reactor Core Matrix Structure at High Temperature
-
摘要: 为研究热管堆堆芯基体结构高温下的热应力失效行为,以简化的多孔基体结构为研究对象,结合Megapower 5 MW(热功率)热管堆的设计参数,制定了正常工况和异常工况2种工况下的高温试验方案,其中异常工况考虑了单根热管失效。宏观检测结果显示基体结构未发生明显的变形与失效,结合数值分析方法获得了基体结构在2种工况条件下的温度分布和应力-应变响应,进一步说明了在试验条件下基体结构并不会发生静强度失效和塑性垮塌失效。本研究为明确热管堆堆芯基体结构的强度设计准则奠定了基础。Abstract: In order to study the thermal stress failure behavior of the core matrix of the heat pipe reactor at high temperature, two high temperature test schemes were developed based on the simplified porous matrix structure and the design parameters of Megapower 5 MWt heat pipe reactor: normal condition and abnormal condition, in which the failure of a single heat pipe is considered under abnormal condition. The macroscopic test results show that there is no obvious deformation and failure of the matrix structure. Combined with numerical analysis method, the temperature distribution and stress-strain response of the matrix structure under two conditions are obtained, which further explains that the static strength failure and plastic collapse failure of the matrix structure will not occur under the test conditions. This study lays a foundation for defining the strength design criteria of the core matrix structure of the heat pipe reactor.
-
Key words:
- Heat pipe reactor /
- Core matrix /
- High temperature /
- Mechanical analysis
-
表 1 316H材料各元素成分实测结果
Table 1. Measured Element Content of 316H
元素 C Cr Ni Mo Mn 质量分数/% 0.046 17.32 12.20 2.48 2.48 元素 S P Si Co Fe 质量分数/% <0.0010 0.0094 0.41 <0.01 余量 表 2 正常工况下试验前后基体结构尺寸 单位:mm
Table 2. Matrix Structure Size Before and After Test under Normal Condition
状态 中心孔
直径内圈热
孔直径外圈冷
孔直径外圈热
孔直径试样
直径试验前 18.01 18.02 18.00 18.02 97.33 试验后 17.98 17.99 18.00 18.00 97.45 表 3 异常工况下试验前后基体结构尺寸 单位:mm
Table 3. Matrix Structure Size Before and After Test under Abnormal Condition
状态 中心孔
直径内圈热
孔直径外圈冷
孔直径外圈热
孔直径试样
直径试验前 18.02 18.03 18.02 18.03 97.34 试验后 17.95 17.96 17.99 18.02 97.45 -
[1] STERBENTZ J W, WERNER J E, MCKELLAR M G, et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R]. Idaho Falls: Idaho National Lab. , 2017. [2] ASME Boiler and Pressure Vessel Committee. ASME boiler and pressure vessel code, section III, division 5: high temperature reactors[S]. New York: The American Society of Mechanical Engineers, 2021: 53-87. [3] MA Y G, TIAN C Q, YU H X, et al. Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor[J]. Progress in Nuclear Energy, 2021, 140: 103904. doi: 10.1016/j.pnucene.2021.103904 [4] MA Y G, LIU J S, YU H X, et al. Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor[J]. Nuclear Engineering and Technology, 2022, 54(6): 2094-2106. doi: 10.1016/j.net.2022.01.002 [5] KAPERNICK R J, GUFFEE R M. Thermal stress calculations for heatpipe-cooled reactor power systems[J]. AIP Conference Proceedings, 2002, 608(1): 666-672. -