高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核电厂凝汽器汽流激振问题研究与预防

祖帅 陈杰 车银辉 汪国山 赵清森 张强 吴振鹏

祖帅, 陈杰, 车银辉, 汪国山, 赵清森, 张强, 吴振鹏. 核电厂凝汽器汽流激振问题研究与预防[J]. 核动力工程, 2023, 44(2): 191-197. doi: 10.13832/j.jnpe.2023.02.0191
引用本文: 祖帅, 陈杰, 车银辉, 汪国山, 赵清森, 张强, 吴振鹏. 核电厂凝汽器汽流激振问题研究与预防[J]. 核动力工程, 2023, 44(2): 191-197. doi: 10.13832/j.jnpe.2023.02.0191
Zu Shuai, Chen Jie, Che Yinhui, Wang Guoshan, Zhao Qingsen, Zhang Qiang, Wu Zhenpeng. Study and Prevention of Steam Flow Induced Vibration of Nuclear Power Plant Condenser[J]. Nuclear Power Engineering, 2023, 44(2): 191-197. doi: 10.13832/j.jnpe.2023.02.0191
Citation: Zu Shuai, Chen Jie, Che Yinhui, Wang Guoshan, Zhao Qingsen, Zhang Qiang, Wu Zhenpeng. Study and Prevention of Steam Flow Induced Vibration of Nuclear Power Plant Condenser[J]. Nuclear Power Engineering, 2023, 44(2): 191-197. doi: 10.13832/j.jnpe.2023.02.0191

核电厂凝汽器汽流激振问题研究与预防

doi: 10.13832/j.jnpe.2023.02.0191
详细信息
    作者简介:

    祖 帅(1990—),男,高级工程师,从事核电厂设备可靠性管理研究工作,E-mail: zushuai@cgnpc.com.cn

  • 中图分类号: TK268

Study and Prevention of Steam Flow Induced Vibration of Nuclear Power Plant Condenser

  • 摘要: 针对某类型核电厂凝汽器在单列运行时发生多起因汽流激振导致的钛管开裂事件,采用基于多孔介质模型的计算流体动力学(CFD)方法对该凝汽器的喉部和管束区汽侧流场进行全三维数值仿真,计算得到凝汽器在多个单列运行工况下的汽侧速度场与钛管汽流激振风险系数分布。根据仿真计算结果,该凝汽器单列运行时,在靠近凝汽器垂直中心线的换热模块空冷区上方的指缝区表层钛管发生汽流激振的风险较高,为降低汽流激振风险需要考虑在相关位置安装防振条或实施预防性堵管。根据凝汽器单列运行泄漏工况数值仿真计算结果与核电机组实际运行记录,建议该核电厂凝汽器单列运行时在夏季、冬季工况下机组安全运行电功率限值分别为900 MW和600 MW。该凝汽器钛管跨距偏大,为了避免发生汽流激振现象,应将钛管跨距缩短到610.5 mm以下。

     

  • 图  1  凝汽器总体结构

    Figure  1.  Overall Structure of Condenser

    图  2  凝汽器三维模型(正视图,从进水端看)

    Figure  2.  Three-dimensional Model of Condenser (Front View, Viewing from Water Inlet End)

    图  3  在泄漏工况Ⅰ凝汽器汽侧三维速度矢量(从进水端看)    

    Figure  3.  Three-dimensional Velocity Vector at Steam Side of Condenser under Leakage Condition Ⅰ (Viewing from the Water Inlet End)

    图  4  在泄漏工况Ⅱ凝汽器汽侧三维速度矢量(从进水端看)     

    Figure  4.  Three-dimensional Velocity Vector at Steam Side of Condenser under Leakage Condition Ⅱ (Viewing from the Water Inlet End)

    图  5  最大风险系数沿轴向的变化

    Figure  5.  Variation of Maximum Risk Coefficient along Axial Direction

    图  6  风险系数计算值云图

    Figure  6.  Nephogram of Calculated Value of Risk Coefficient

    图  7  在不同工况下钛管最大风险系数

    Figure  7.  Maximum Risk Coefficient of Titanium Tube under Different Conditions

    表  1  凝汽器泄漏事件运行参数

    Table  1.   Operation Parameters under Condenser Leakage Condition

    项目泄漏工况Ⅰ泄漏工况Ⅱ
    机组电功率/MW977833
    运行列1A/3A2B/4B
    汽轮机排汽量/(kg·s−1)753.8650.4
    蒸汽干度0.910.91
    1A侧高压加热器应急疏水
    闪蒸汽量 /(kg·s−1)
    022
    蒸汽压力/Pa5.84.7
    海水温度/℃18.820.5
    下载: 导出CSV

    表  2  各工况下钛管风险系数

    Table  2.   Risk Coefficient of Titanium Tube under Various Conditions

    工况单/双列海水温
    度/℃
    蒸汽流量/
    (kg·s−1)
    蒸汽比体积/
    (m3·kg−1)
    临界流速/
    (m·s−1)
    指缝区最高流速/
    (m·s−1)
    钛管风险
    系数要求
    $ \alpha K\sqrt \delta $钛管风险系数
    厂家 TMCR24823.5123.64156.698.0<10.5810.626
    100%TMCR24823.51122.87154.1133.6<10.5810.867
    工况Ⅰ(977 MW)18.8753.822.21151.8171.4≥10.5811.129
    工况Ⅱ(833 MW)20.5672.427.15167.9169.0≥10.5811.007
    夏季600 MW24516.428619.756143.2108.4<10.5810.757
    650 MW24554.24618.68139.2109.5<10.5810.786
    700 MW24590.91317.92136.4112.0<10.5810.821
    840 MW24690.84415.88128.4114.8<10.5810.894
    900 MW24735.00915.02124.9115.2<10.5810.923
    冬季600 MW10483.7137.99198.6194.8<10.5810.981
    650 MW10519.55935.89193.0195.6≥10.5811.013
    700 MW10555.12434.01187.9198.3≥10.5811.055
    750 MW10591.41531.57181.0195.8≥10.5811.082
    840 MW10651.00029.51175.0204.0≥10.5811.166
    900 MW10693.03627.65169.4222.9≥10.5811.316
    下载: 导出CSV
  • [1] 袁小会,蔡逸飞. 凝汽器钛管断裂失效分析[J]. 武汉工程大学学报,2014, 36(3): 53-57. doi: 10.3969/j.issn.1674-2869.2014.03.011
    [2] 陈杰. 凝汽器换热管断裂损伤分析与综合防治[J]. 热力发电,2019, 48(6): 115-120. doi: 10.19666/j.rlfd.201901039
    [3] 祖帅,车银辉,关建军,等. 核电厂凝汽器泄漏共性问题分析及防治[J]. 热力发电,2020, 49(12): 164-169. doi: 10.19666/j.rlfd.202003065
    [4] 汪国山. 电站凝汽器热力性能数值仿真及其应用[M]. 北京: 中国电力出版社, 2010: 18-21, 101.
    [5] ZHANG C. Numerical modeling using a quasi-three-dimensional procedure for large power plant condensers[J]. Journal of Heat Transfer, 1994, 116(1): 180-188. doi: 10.1115/1.2910854
    [6] AFGAN N, SPALDING D B. Turbulent Buoyant Convection or HTS Report 76/11[C]//The calculation of free-convection phenomena in gas-liquid mixtures, ICHMT Seminar Dubrovnik , Washington D C: Hemisphere, 1976: 569-586.
    [7] AFGAN N H, SCHLUNDER E U. Heat Exchangers: Design and Theory Sourcebook[M]. Washington D. C: Scripta Book Company,1974: 155-176.
    [8] CONNORS JR H J. Fluidelastic vibration of heat exchanger tube arrays[J]. Journal of Mechanical Design, 1978, 100(2): 347-353. doi: 10.1115/1.3453921
    [9] PETTIGREW M J, GORMAN D J. Vibration and heat exchanger tube bundles in liquid and two-phase cross flow[J]. Proceedings of the ASME pressure vessel and piping conference, 1981, 52: 59-110.
    [10] 汪国山. 岭澳核电厂二期凝汽器内部三维流场仿真分析研究报告[D]. 上海: 上海交通大学, 2021.
    [11] 张水桃,许晔,鲁前奎. 核电汽轮机凝汽器冷却管避免振动碰磨的预防措施[J]. 东方汽轮机,2014(3): 1-4,10. doi: 10.13808/j.cnki.issn1674-9987.2014.03.001
    [12] GEBCO Engineering Inc. Design and operating guidelines for nuclear power plant condensers: EPRI-NP-7382[R]. Palo Alto: EPRI, 1991.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  156
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2023-01-12
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回