Preliminary Conceptual Design of Ultra-high Flux Reactor Core with Annular Elements
-
摘要: 基于环形燃料元件,提出了一种超高通量堆(UFR)堆芯概念设计。UFR燃料组件设计采用61个燃料元件构成的六角形组件,堆芯采用52盒燃料组件、9盒控制棒组件和厚反射层设计。通过开展堆芯概念设计方案评价,给出了堆芯循环长度、中子注量率、中子能谱、中子空间分布等关键参数。结果表明,在当前的总体参数下所提出的UFR的最大中子注量率可达到1.0×1016 cm−2 ·s−1。
-
关键词:
- 环形燃料元件 /
- 超高通量堆(UFR) /
- 概念设计 /
- 中子注量率
Abstract: Based on the annular fuel elements, a conceptual design of ultra-high flux reactor (UFR) is proposed. The fuel assembly design adopts a hexagonal assembly composed of 61 fuel elements. The core is designed with 52 boxes of fuel assemblies, 9 boxes of control rod assemblies and a thick reflecting layer. The key parameters such as the core cycle length, neutron fluence rate, neutron energy spectrum and neutron spatial distribution are given from the evaluation of the core conceptual design scheme. The results show that the maximum neutron fluence rate of the proposed ultra-high flux reactor can reach 1.0 × 1016 cm−2·s−1 under the current general parameters. -
表 1 堆芯主要设计参数
Table 1. Main Design Parameters of the Core
参数名 参数值 堆芯热功率/MW 200 235U富集度/% 60 燃料组件数目 52 控制棒组件数目 9 径向反射层外径/cm 300 包壳厚度/cm 0.03 燃料棒外径/cm 0.096 燃料棒内径/cm 0.064 组件对边距/cm 9.3 活性区高度/cm 45 表 2 最大中子注量率与芯体外径的关系
Table 2. Relationship between Maximum Neutron Fluence Rate and Outer Diameter of the Fuel Core
芯体外径/mm 最大中子注量率/(1016cm−2·s−1) 78 0.7459 82 0.7460 86 0.7460 90 0.7459 表 3 最大中子注量率随燃料相对密度的变化
Table 3. Variation of Maximum Neutron Fluence Rate with the Relative Density of the Fuel
相对密度 最大中子注量率/(1016cm−2·s−1) 0.8 0.7372 0.9 0.7420 1.0 0.7460 1.1 0.7490 -
[1] 夏榜样,赵传奇,曹良志,等. 环形元件超临界水冷堆CSR1000A初步概念设计[J]. 核动力工程,2013, 34(1): 15-18. doi: 10.3969/j.issn.0258-0926.2013.01.004 [2] ELISEEV V A, KOROBEYNIKOVA L V, MASLOV P A, et al. ON feasibility of using nitride and metallic fuel in the MBIR reactor core[J]. Nuclear Energy and Technology, 2016, 2(3): 179-182. doi: 10.1016/j.nucet.2016.07.009 [3] HEIDET F, ROGLANS-RIBAS J. Core design activities of the versatile test reactor-conceptual phase[J]. EPJ Web of Conferences, 2021, 247: 01010. [4] BALLAGNY A, BERGAMASCHI Y, BOUILLOUX Y, et al. Main technical options of the Jules Horowitz Reactor project to achieve high flux performances and high safety level[C]//Proceedings of the 9th Meeting of the International Group on Research Reactors (IGORR-9). Sydney: International Group on Research Reactors, 2003. [5] SHE D, LIU Y X, WANG K, et al. Development of burnup methods and capabilities in Monte Carlo code RMC[J]. Annals of Nuclear Energy, 2013, 51: 289-294. doi: 10.1016/j.anucene.2012.07.033 -