高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAM预训练大模型智能化组合策略的燃料组件水下快速精确定位优化研究

陈相羽 李豪 王炳炎 王坤 万浩 温忻

陈相羽, 李豪, 王炳炎, 王坤, 万浩, 温忻. 基于SAM预训练大模型智能化组合策略的燃料组件水下快速精确定位优化研究[J]. 核动力工程, 2023, 44(S2): 140-145. doi: 10.13832/j.jnpe.2023.S2.0140
引用本文: 陈相羽, 李豪, 王炳炎, 王坤, 万浩, 温忻. 基于SAM预训练大模型智能化组合策略的燃料组件水下快速精确定位优化研究[J]. 核动力工程, 2023, 44(S2): 140-145. doi: 10.13832/j.jnpe.2023.S2.0140
Chen Xiangyu, Li Hao, Wang Bingyan, Wang Kun, Wan Hao, Wen Xin. Optimization Research on Rapid and Accurate Underwater Positioning of Fuel Assemblies Based on SAM Pre-Trained Large Model Intelligent Combination Strategy[J]. Nuclear Power Engineering, 2023, 44(S2): 140-145. doi: 10.13832/j.jnpe.2023.S2.0140
Citation: Chen Xiangyu, Li Hao, Wang Bingyan, Wang Kun, Wan Hao, Wen Xin. Optimization Research on Rapid and Accurate Underwater Positioning of Fuel Assemblies Based on SAM Pre-Trained Large Model Intelligent Combination Strategy[J]. Nuclear Power Engineering, 2023, 44(S2): 140-145. doi: 10.13832/j.jnpe.2023.S2.0140

基于SAM预训练大模型智能化组合策略的燃料组件水下快速精确定位优化研究

doi: 10.13832/j.jnpe.2023.S2.0140
详细信息
    作者简介:

    陈相羽(1992—),男,工程师,现主要从事反应堆智能化专用设备的研究,E-mail: xiangyu.c@qq.com

  • 中图分类号: TL3

Optimization Research on Rapid and Accurate Underwater Positioning of Fuel Assemblies Based on SAM Pre-Trained Large Model Intelligent Combination Strategy

  • 摘要: 反应堆换料过程中燃料组件的精确定位是成功抓取与无损提升的关键,由于对安全性与效率的高要求,面对堆内复杂水下环境,需要在保证高精度的同时实现在多变环境中的适应性与可靠性,从而实现全自动精确定位。本研究针对该情况,建立目标检测深度学习模型(YOLO),并利用基于自然语言处理的“分割一切(SAM)”图像分割预训练大模型进行进一步切分,最后通过先验结构实现目标图形学后处理优化,提升燃料组件的定位精度。该多阶段的组合策略模型实现了全自动智能化定位过程的算法解释性,满足了换料保障现场的调试要求,同时通过目标快速检测-目标分割-形态学后处理计算的优化方案解决水下不确定性环境中的不稳定问题,具有高范用性与鲁棒性。在模拟试验环境中,该模型快速可靠、调试性强,单组件定位时间不超过1 s,误差不超过0.5 mm,换料定位效率提升超过90%,大幅度降低操作人员受辐照剂量。

     

  • 图  1  GIoU模型计算情况

    红框—预测区域;绿框—基准区域;蓝框—预测区域与基准区域的最小外接矩形区域

    Figure  1.  Different Situations of GIoU Precision Model

    图  2  目标分割示意图

    Figure  2.  Schematic Diagram of Object Segmentation

    图  3  模拟定位试验环境

    Figure  3.  Simulated Positioning Test Environment

    图  4  训练过程GIoU_loss变化曲线

    Figure  4.  Change Curve of GIoU_loss in Training Process

    图  5  燃料组件初步定位结果

    Figure  5.  Preliminary Positioning Result of Fuel Assembly

    图  6  燃料组件图像分割效果

    Figure  6.  Image Segmentation Effect of Fuel Assembly

    图  7  燃料组件精确定位结果

    Figure  7.  Accurate Positioning Result of Fuel Assembly

  • [1] 程伟,王磊,胡建华,等. 基于机器视觉技术的乏燃料贮存格架自动定位试验方法研究与应用[J]. 核动力工程,2020, 41(6): 198-201.
    [2] 高永明,李声,李丽丹. 燃料组件水下非接触变形测量方法[J]. 核动力工程,2010, 31(4): 87-90.
    [3] 刘赫. 核燃料组件变形尺寸测量系统设计[D]. 成都: 四川大学,2005.
    [4] 任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015, 33(18): 91-95. doi: 10.3981/j.issn.1000-7857.2015.18.015
    [5] 朱江,杜瑞,李建奇,等. 基于注意力机制的曲轴瓦盖上料机器人视觉定位和检测方法[J]. 仪器仪表学报,2021, 42(5): 140-150. doi: 10.19650/j.cnki.cjsi.J2006768
    [6] MAZUROWSKI M A, DONG H Y, GU H X, et al. Segment anything model for medical image analysis: an experimental study[J]. Medical Image Analysis, 2023, 89: 102918. doi: 10.1016/j.media.2023.102918
    [7] ZHU X K, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal, BC, Canada: IEEE, 2021: 2778-2788.
    [8] ZHANG Y, SHEN Y L, ZHANG J. An improved tiny-yolov3 pedestrian detection algorithm[J]. Optik, 2019, 183: 17-23. doi: 10.1016/j.ijleo.2019.02.038
    [9] HU X L, LIU Y, ZHAO Z X, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and Electronics in Agriculture, 2021, 185: 106135. doi: 10.1016/j.compag.2021.106135
    [10] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: IEEE, 2020: 1571-1580.
    [11] GHIASI G, LIN T Y, LE Q V. DropBlock: a regularization method for convolutional networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc, 2018: 10750-10760.
    [12] BOUGUEZZI S, BEN FREDJ H, FAIEDH H, et al. Improved architecture for traffic sign recognition using a self-regularized activation function: SigmaH[J]. The Visual Computer, 2022, 38(11): 3747-3764. doi: 10.1007/s00371-021-02211-5
    [13] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence. New York, NY, USA: AAAI, 2020: 12993-13000.
  • 加载中
图(7)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  64
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-11
  • 修回日期:  2023-09-20
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回