[1] |
程伟,王磊,胡建华,等. 基于机器视觉技术的乏燃料贮存格架自动定位试验方法研究与应用[J]. 核动力工程,2020, 41(6): 198-201.
|
[2] |
高永明,李声,李丽丹. 燃料组件水下非接触变形测量方法[J]. 核动力工程,2010, 31(4): 87-90.
|
[3] |
刘赫. 核燃料组件变形尺寸测量系统设计[D]. 成都: 四川大学,2005.
|
[4] |
任亮,李国云,江林志,等. 压水堆燃料组件池边检查技术研究进展[J]. 科技导报,2015, 33(18): 91-95. doi: 10.3981/j.issn.1000-7857.2015.18.015
|
[5] |
朱江,杜瑞,李建奇,等. 基于注意力机制的曲轴瓦盖上料机器人视觉定位和检测方法[J]. 仪器仪表学报,2021, 42(5): 140-150. doi: 10.19650/j.cnki.cjsi.J2006768
|
[6] |
MAZUROWSKI M A, DONG H Y, GU H X, et al. Segment anything model for medical image analysis: an experimental study[J]. Medical Image Analysis, 2023, 89: 102918. doi: 10.1016/j.media.2023.102918
|
[7] |
ZHU X K, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal, BC, Canada: IEEE, 2021: 2778-2788.
|
[8] |
ZHANG Y, SHEN Y L, ZHANG J. An improved tiny-yolov3 pedestrian detection algorithm[J]. Optik, 2019, 183: 17-23. doi: 10.1016/j.ijleo.2019.02.038
|
[9] |
HU X L, LIU Y, ZHAO Z X, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and Electronics in Agriculture, 2021, 185: 106135. doi: 10.1016/j.compag.2021.106135
|
[10] |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA, USA: IEEE, 2020: 1571-1580.
|
[11] |
GHIASI G, LIN T Y, LE Q V. DropBlock: a regularization method for convolutional networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc, 2018: 10750-10760.
|
[12] |
BOUGUEZZI S, BEN FREDJ H, FAIEDH H, et al. Improved architecture for traffic sign recognition using a self-regularized activation function: SigmaH[J]. The Visual Computer, 2022, 38(11): 3747-3764. doi: 10.1007/s00371-021-02211-5
|
[13] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence. New York, NY, USA: AAAI, 2020: 12993-13000.
|