Numerical Study of Convective Heat Transfer Characteristics of Superheated Steam in Rod Bundle Channels at Low Reynolds Numbers
-
摘要: 由于现有经验关联式及相关研究成果缺乏可靠的棒束通道内低雷诺数过热蒸汽流动与传热预测关联式,通过以棒束通道内低雷诺数(Rein=1937.90~9471.24)过热蒸汽为研究对象,采用数值模拟方法,基于大涡模拟(LES)湍流模型,探究入口蒸汽速度、过热度、初始壁面温度、出口蒸汽压力以及栅径比对棒束通道内低雷诺数过热蒸汽对流换热特性的影响,进而对现有的经验关联式进行修正。数值模拟结果表明:入口蒸汽速度、过热度、初始壁面温度、出口蒸汽压力以及栅径比的增大均会使对流换热系数增大;随着入口蒸汽速度、出口蒸汽压力以及栅径比的增大,努塞尔数增大;随着入口蒸汽过热度以及初始壁面温度的升高,努塞尔数减小。修正后的Dittus-Boelter经验关联式误差在10%以内,为指导工程实际应用以及保证压水堆堆芯安全提供了依据。Abstract: Due to the lack of reliable empirical correlations and related research results for predicting the flow and heat transfer of superheated steam in rod bundle channels at low Reynolds numbers, numerical simulation method is used to study superheated steam in rod bundle channels at low Reynolds numbers (Rein=1937.90~9471.24). This method is based on the Large Eddy Simulation (LES) turbulence model to investigate the effects of inlet steam velocity, degree of superheat, initial wall temperature, outlet steam pressure, and grid diameter ratio on the convective heat transfer characteristics of superheated steam in rod bundle channels at low Reynolds numbers, and to further modify the current empirical correlations. The numerical simulation results showed that the increase in inlet steam velocity, degree of superheat, initial wall temperature, outlet steam pressure, and grid diameter ratio all increased the convective heat transfer coefficient. As the inlet steam velocity, outlet steam pressure, and grid diameter ratio increased, the Nusselt number increased. As the inlet steam degree of superheat and initial wall temperature increased, the Nusselt number decreased. The error of the modified Dittus-Boelter empirical correlation was within 10%, providing a basis for guiding practical engineering applications and ensuring the safety of pressurized water reactor cores.
-
表 1 棒束通道几何参数
Table 1. Geometric Parameters of the Rod Bundle Channel
参数名 参数值 包壳内、外径/mm 8.360、9.500 气隙内、外径/mm 8.138、8.360 UO2芯块直径/mm 8.138 燃料棒长度/mm 1000 栅径比 1.33/1.20/1.06 表 2 过热蒸汽物性参数[12]
Table 2. Physical Property Parameters of Superheated Steam
温度/K 密度/(kg·m−3) 定压比热/(J·kg−1·K−1) 热导率/(W·m−1·K−1) 运动粘度/(m2·s−1) 533.15 0.41312 1993.7 0.03936 4.33×10−5 633.15 0.34733 2045.8 0.05009 6.34×10−5 733.15 0.29974 2108.1 0.06173 8.72×10−5 833.15 0.26366 2175.2 0.07407 1.15×10−4 933.15 0.23536 2245.0 0.08698 1.45×10−4 1033.15 0.21255 2315.4 0.10035 1.79×10−4 1133.15 0.19378 2385.0 0.11409 2.17×10−4 1233.15 0.17805 2452.2 0.12812 2.57×10−4 表 3 本研究相关边界条件
Table 3. Boundary Conditions Relevant to This Study
序号 栅径比 出口蒸汽压力/MPa 入口蒸汽过热度/K 入口蒸汽速度/(m·s−1) 初始壁面温度/K 衰变热/(W·m−1) Rein 工况1 1.33 0.10 100 10 923.15 2500 2950.99 工况2 1.33 0.10 150 10 923.15 2500 2365.71 工况3 1.33 0.10 150 15 923.15 2500 3548.57 工况4 1.33 0.10 150 20 923.15 2500 4731.42 工况5 1.33 0.10 150 25 923.15 2500 5914.28 工况6 1.33 0.10 150 30 923.15 2500 7097.14 工况7 1.33 0.10 200 10 923.15 2500 1937.90 工况8 1.33 0.10 150 10 773.15 2500 2365.71 工况9 1.33 0.10 150 10 1073.15 2500 2365.71 工况10 1.20 0.10 150 20 923.15 2500 3655.21 工况11 1.06 0.10 150 20 923.15 2500 2551.10 工况12 1.33 0.25 150 10 923.15 2500 5877.82 工况13 1.33 0.40 150 10 923.15 2500 9471.24 -
[1] OECD Nuclear Energy Agency. Nuclear Fuel Behaviour in Loss-of-Coolant Accident (LOCA) Conditions: NEA No. 6846[R]. Paris: OECD Publishing, 2019. [2] 梁爽. 锆合金棒高温表面沸腾传热特性实验与数值模拟研究[D]. 重庆: 重庆大学,2021. [3] HOCHREITER L E. FLECHT SEASET program. Final report[Z]. Pittsburgh: Westinghouse Electric Corp. , 1985. [4] AKIMOTO H, IGUCHI T, MURAO Y. Core radial power profile effect on system and core cooling behavior during reflood phase of PWR-LOCA with CCTF data[J]. Journal of Nuclear Science and Technology, 1985, 22(7): 538-550. doi: 10.1080/18811248.1985.9735695 [5] CHO S, MOON S K, CHOI K Y, et al. Rewetting of vertical hot surface in a centrally heated annulus and a 6×6 rod bundle geometry during reflood phase[C]//14th International Conference on Nuclear Engineering. Miami: ASME, 2006: 415-422. [6] 周璇,张震,昝元锋. 3×3棒束通道内蒸汽对流换热特性数值分析[J]. 核动力工程,2020, 41(1): 21-27. [7] 吕莉,于涛,余红星,等. 基于RELAP5的典型压水堆再淹没壁面蒸汽对流换热模型研究[J]. 核动力工程,2015, 36(2): 42-45. [8] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Introduction to heat transfer[M]. 6th ed. Hoboken: John Wiley & Sons, 2011: 377-378. [9] 曾付林,唐锚,赵鹏程,等. 栅径比对环形燃料外周向温度分布不均匀性影响[J]. 核技术,2023, 46(9): 090601. doi: 10.11889/j.0253-3219.2023.hjs.46.090601 [10] 田瑞峰,毛晓辉,王小军. 5×5定位格架棒束通道内三维流场研究[J]. 核动力工程,2008, 29(5): 48-51. [11] 靳爽. 基于神经网络优化方法的海洋摇摆条件下棒束流动传热特性数值模拟研究[D]. 上海: 上海交通大学,2021. [12] LINSTROM P J, MALLARD W G. NIST chemistry WebBook[EB/OL]. Gaithersburg National Institute of Standards and Technology [2024-07-10]. https://webbook.nist.gov/chemistry/. [13] FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials, 2000, 279(1): 1-18. doi: 10.1016/S0022-3115(99)00273-1 [14] 张莉丽,李文炎. 国产Zr-4合金热物理性能测试[J]. 中国原子能科学研究院年报,1992(1): 170-172. [15] 李莹,陈鑫,王金宇,等. 圆管通道内过热蒸汽流动换热特性实验研究[J]. 核科学与工程,2022, 42(6): 1331-1336. doi: 10.3969/j.issn.0258-0918.2022.06.015 [16] DAVIDSON L, DAHLSTRÖM S. Hybrid LES-RANS: an approach to make LES applicable at high Reynolds number[J]. International Journal of Computational Fluid Dynamics, 2005, 19(6): 415-427. doi: 10.1080/10618560500242280 [17] BALAKUMAR P, PARK G I. DNS/LES simulations of separated flows at high Reynolds numbers[C]//45th AIAA Fluid Dynamics Conference. Dallas: American Institute of Aeronautics and Astronautics, 2015. https://doi.org/10.2514/6.2015-2783. [18] 俞建阳,王若玉,陈浮,等. 不同亚格子模型的对比分析及其运用[J]. 工程热物理学报,2016, 37(11): 2311-2318. [19] KIM M, LIM J, KIM S, et al. Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113287. doi: 10.1016/j.cma.2020.113287 [20] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001 [21] 陈广亮,徐俊英,张志俭,等. PWR栅元流固共轭传热CFD计算方案研究[J]. 哈尔滨工程大学学报,2018, 39(4): 716-720. [22] WANG H, WANG W S, BI Q C. Experimental investigation on boiling heat transfer of high pressure water in a SCWR sub-channel[J]. International Journal of Heat and Mass Transfer, 2017, 105: 799-810. doi: 10.1016/j.ijheatmasstransfer.2016.09.088 [23] 杨世铭,陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社,2006: 279. -