高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

棒束通道内低雷诺数过热蒸汽对流换热特性数值模拟研究

方鑫奎 曾未 王杰 吴丹 卢涛 邓坚 罗彦

方鑫奎, 曾未, 王杰, 吴丹, 卢涛, 邓坚, 罗彦. 棒束通道内低雷诺数过热蒸汽对流换热特性数值模拟研究[J]. 核动力工程, 2025, 46(4): 49-59. doi: 10.13832/j.jnpe.2024.070037
引用本文: 方鑫奎, 曾未, 王杰, 吴丹, 卢涛, 邓坚, 罗彦. 棒束通道内低雷诺数过热蒸汽对流换热特性数值模拟研究[J]. 核动力工程, 2025, 46(4): 49-59. doi: 10.13832/j.jnpe.2024.070037
Fang Xinkui, Zeng Wei, Wang Jie, Wu Dan, Lu Tao, Deng Jian, Luo Yan. Numerical Study of Convective Heat Transfer Characteristics of Superheated Steam in Rod Bundle Channels at Low Reynolds Numbers[J]. Nuclear Power Engineering, 2025, 46(4): 49-59. doi: 10.13832/j.jnpe.2024.070037
Citation: Fang Xinkui, Zeng Wei, Wang Jie, Wu Dan, Lu Tao, Deng Jian, Luo Yan. Numerical Study of Convective Heat Transfer Characteristics of Superheated Steam in Rod Bundle Channels at Low Reynolds Numbers[J]. Nuclear Power Engineering, 2025, 46(4): 49-59. doi: 10.13832/j.jnpe.2024.070037

棒束通道内低雷诺数过热蒸汽对流换热特性数值模拟研究

doi: 10.13832/j.jnpe.2024.070037
基金项目: 国家自然科学基金(52176052,U2067210);国家重点研发计划青年科学家项目(2022YFB1902300)
详细信息
    作者简介:

    方鑫奎(1999—),男,博士研究生,现主要从事淬冷沸腾方面研究,E-mail: fxk19991122@163.com

    通讯作者:

    曾 未,E-mail: zengwei@npic.ac.cn

  • 中图分类号: TL334

Numerical Study of Convective Heat Transfer Characteristics of Superheated Steam in Rod Bundle Channels at Low Reynolds Numbers

  • 摘要: 由于现有经验关联式及相关研究成果缺乏可靠的棒束通道内低雷诺数过热蒸汽流动与传热预测关联式,通过以棒束通道内低雷诺数(Rein=1937.90~9471.24)过热蒸汽为研究对象,采用数值模拟方法,基于大涡模拟(LES)湍流模型,探究入口蒸汽速度、过热度、初始壁面温度、出口蒸汽压力以及栅径比对棒束通道内低雷诺数过热蒸汽对流换热特性的影响,进而对现有的经验关联式进行修正。数值模拟结果表明:入口蒸汽速度、过热度、初始壁面温度、出口蒸汽压力以及栅径比的增大均会使对流换热系数增大;随着入口蒸汽速度、出口蒸汽压力以及栅径比的增大,努塞尔数增大;随着入口蒸汽过热度以及初始壁面温度的升高,努塞尔数减小。修正后的Dittus-Boelter经验关联式误差在10%以内,为指导工程实际应用以及保证压水堆堆芯安全提供了依据。

     

  • 图  1  1/4模型(栅径比1.33)三维结构示意图

    Figure  1.  Three-dimensional Structure Schematic Diagram of the 1/4 Model with a Grid Diameter Ratio of 1.33

    图  2  1/4棒束通道横截面网格示意图

    Figure  2.  Schematic Diagram of the 1/4 Rod Bundle Channel Cross-Section Mesh

    图  3  各组网格的包壳平均壁面温度变化趋势

    Figure  3.  Variation Trends of the Average Cladding Wall Temperature for Each Mesh Group

    图  4  不同时间步长的包壳平均壁面温度变化趋势

    Figure  4.  Variation Trends of the Average Cladding Wall Temperature for Different Time Steps

    图  5  LES模拟结果与FLECHT实验结果对比

    Pr—普朗特数。

    Figure  5.  Comparison of Large Eddy Simulation (LES) Results with FLECHT Experiment Results

    图  6  不同入口蒸汽速度下包壳平均热流密度变化趋势

    Figure  6.  Variation Trends of the Average Heat Flux of Cladding under Different Inlet Steam Velocities

    图  7  不同入口蒸汽速度下包壳平均壁面温度变化趋势

    Figure  7.  Variation Trends of the Average Cladding Wall Temperature under Different Inlet Steam Velocities

    图  8  不同入口蒸汽速度下蒸汽平均温度变化趋势

    Figure  8.  Variation Trends of the Average Steam Temperature under Different Inlet Steam Velocities

    图  9  不同入口蒸汽速度下平均对流换热系数变化趋势

    Figure  9.  Variation Trends of the Average Convective Heat Transfer Coefficient under Different Inlet Steam Velocities

    图  10  不同入口蒸汽速度下时均雷诺数、时均努塞尔数变化趋势

    Figure  10.  Variation Trends of Time-averaged Reynolds Number and Time-averaged Nusselt Number under Different Inlet Steam Velocities

    图  11  不同入口蒸汽过热度下包壳平均热流密度变化趋势

    Figure  11.  Variation Trends of Average Heat Flux of Cladding under Different Inlet Steam Superheat Degrees

    图  12  不同入口蒸汽过热度下包壳平均壁面温度变化趋势

    Figure  12.  Variation Trends of Average Cladding Wall Temperature under Different Inlet Steam Superheat Degrees

    图  13  不同入口蒸汽过热度下平均对流换热系数变化趋势

    Figure  13.  Variation Trends of Average Convective Heat Transfer Coefficient under Different Inlet Steam Superheat Degrees

    图  14  不同入口蒸汽过热度下时均雷诺数、时均努塞尔数变化趋势

    Figure  14.  Variation Trends of Time-averaged Reynolds Number and Time-averaged Nusselt Number under Different Inlet Steam Superheat Degrees

    图  15  不同初始壁面温度下包壳平均热流密度变化趋势

    Figure  15.  Variation Trends of Average Heat Flux of Cladding under Different Initial Wall Surface Temperatures

    图  16  不同初始壁面温度下蒸汽平均温度变化趋势

    Figure  16.  Variation Trends of Average Steam Temperature under Different Initial Wall Surface Temperatures

    图  17  不同初始壁面温度下平均对流换热系数变化趋势

    Figure  17.  Variation Trends of Average Convective Heat Transfer Coefficient under Different Initial Wall Surface Temperatures

    图  18  不同初始壁面温度下时均雷诺数、时均努塞尔数变化趋势

    Figure  18.  Variation Trends of Time-averaged Reynolds Number and Time-averaged Nusselt Number under Different Initial Wall Surface Temperatures

    图  19  不同出口蒸汽压力下包壳平均热流密度变化趋势

    Figure  19.  Variation Trends of Average Cladding Heat Flux under Different Outlet Steam Pressures

    图  20  不同出口蒸汽压力下包壳平均壁面温度变化趋势

    Figure  20.  Variation Trends of Average Cladding Wall Temperature of under Different Outlet Steam Pressures

    图  21  不同出口蒸汽压力下蒸汽平均温度变化趋势

    Figure  21.  Variation Trends of Average Steam Temperature under Different Outlet Steam Pressures

    图  22  不同出口蒸汽压力下平均对流换热系数变化趋势

    Figure  22.  Variation Trends of Average Convective Heat Transfer Coefficient under Different Outlet Steam Pressures

    图  23  不同出口蒸汽压力下时均雷诺数、时均努塞尔数变化趋势

    Figure  23.  Variation Trends of Time-averaged Reynolds Number and Time-averaged Nusselt Number under Different Outlet Steam Pressures

    图  24  不同栅径比下包壳平均热流密度变化趋势

    Figure  24.  Variation Trends of Average Cladding Heat Flux under Different Grid Diameter Ratios

    图  25  不同栅径比下包壳平均壁面温度变化趋势

    Figure  25.  Variation Trends of Average Cladding Wall Temperature under Different Grid Diameter Ratios

    图  26  不同栅径比下蒸汽平均温度变化趋势

    Figure  26.  Variation Trends of Average Steam Temperature under Different Grid Diameter Ratios

    图  27  不同栅径比下平均对流换热系数变化趋势

    Figure  27.  Variation Trends of Average Convective Heat Transfer Coefficient under Different Grid Diameter Ratios

    图  28  不同栅径比下时均雷诺数、时均努塞尔数变化趋势

    Figure  28.  Variation Trends of Time-averaged Reynolds Number and Time-averaged Nusselt Number under Different Grid Diameter Ratios

    图  29  不同经验关联式与LES结果对比

    Figure  29.  Comparison of Different Empirical Correlations and LES Results

    图  30  修正后的D-B关联式与LES结果对比

    Figure  30.  Comparison of the Corrected Dittus-Boelter Correlation with LES Results

    表  1  棒束通道几何参数

    Table  1.   Geometric Parameters of the Rod Bundle Channel

    参数名参数值
    包壳内、外径/mm8.360、9.500
    气隙内、外径/mm8.138、8.360
    UO2芯块直径/mm8.138
    燃料棒长度/mm1000
    栅径比1.33/1.20/1.06
    下载: 导出CSV

    表  2  过热蒸汽物性参数[12]

    Table  2.   Physical Property Parameters of Superheated Steam

    温度/K密度/(kg·m−3)定压比热/(J·kg−1·K−1)热导率/(W·m−1·K−1)运动粘度/(m2·s−1)
    533.150.413121993.70.039364.33×10−5
    633.150.347332045.80.050096.34×10−5
    733.150.299742108.10.061738.72×10−5
    833.150.263662175.20.074071.15×10−4
    933.150.235362245.00.086981.45×10−4
    1033.150.212552315.40.100351.79×10−4
    1133.150.193782385.00.114092.17×10−4
    1233.150.178052452.20.128122.57×10−4
    下载: 导出CSV

    表  3  本研究相关边界条件

    Table  3.   Boundary Conditions Relevant to This Study

    序号栅径比出口蒸汽压力/MPa入口蒸汽过热度/K入口蒸汽速度/(m·s−1)初始壁面温度/K衰变热/(W·m−1)Rein
    工况11.330.1010010923.1525002950.99
    工况21.330.1015010923.1525002365.71
    工况31.330.1015015923.1525003548.57
    工况41.330.1015020923.1525004731.42
    工况51.330.1015025923.1525005914.28
    工况61.330.1015030923.1525007097.14
    工况71.330.1020010923.1525001937.90
    工况81.330.1015010773.1525002365.71
    工况91.330.10150101073.1525002365.71
    工况101.200.1015020923.1525003655.21
    工况111.060.1015020923.1525002551.10
    工况121.330.2515010923.1525005877.82
    工况131.330.4015010923.1525009471.24
    下载: 导出CSV
  • [1] OECD Nuclear Energy Agency. Nuclear Fuel Behaviour in Loss-of-Coolant Accident (LOCA) Conditions: NEA No. 6846[R]. Paris: OECD Publishing, 2019.
    [2] 梁爽. 锆合金棒高温表面沸腾传热特性实验与数值模拟研究[D]. 重庆: 重庆大学,2021.
    [3] HOCHREITER L E. FLECHT SEASET program. Final report[Z]. Pittsburgh: Westinghouse Electric Corp. , 1985.
    [4] AKIMOTO H, IGUCHI T, MURAO Y. Core radial power profile effect on system and core cooling behavior during reflood phase of PWR-LOCA with CCTF data[J]. Journal of Nuclear Science and Technology, 1985, 22(7): 538-550. doi: 10.1080/18811248.1985.9735695
    [5] CHO S, MOON S K, CHOI K Y, et al. Rewetting of vertical hot surface in a centrally heated annulus and a 6×6 rod bundle geometry during reflood phase[C]//14th International Conference on Nuclear Engineering. Miami: ASME, 2006: 415-422.
    [6] 周璇,张震,昝元锋. 3×3棒束通道内蒸汽对流换热特性数值分析[J]. 核动力工程,2020, 41(1): 21-27.
    [7] 吕莉,于涛,余红星,等. 基于RELAP5的典型压水堆再淹没壁面蒸汽对流换热模型研究[J]. 核动力工程,2015, 36(2): 42-45.
    [8] BERGMAN T L, LAVINE A S, INCROPERA F P, et al. Introduction to heat transfer[M]. 6th ed. Hoboken: John Wiley & Sons, 2011: 377-378.
    [9] 曾付林,唐锚,赵鹏程,等. 栅径比对环形燃料外周向温度分布不均匀性影响[J]. 核技术,2023, 46(9): 090601. doi: 10.11889/j.0253-3219.2023.hjs.46.090601
    [10] 田瑞峰,毛晓辉,王小军. 5×5定位格架棒束通道内三维流场研究[J]. 核动力工程,2008, 29(5): 48-51.
    [11] 靳爽. 基于神经网络优化方法的海洋摇摆条件下棒束流动传热特性数值模拟研究[D]. 上海: 上海交通大学,2021.
    [12] LINSTROM P J, MALLARD W G. NIST chemistry WebBook[EB/OL]. Gaithersburg National Institute of Standards and Technology [2024-07-10]. https://webbook.nist.gov/chemistry/.
    [13] FINK J K. Thermophysical properties of uranium dioxide[J]. Journal of Nuclear Materials, 2000, 279(1): 1-18. doi: 10.1016/S0022-3115(99)00273-1
    [14] 张莉丽,李文炎. 国产Zr-4合金热物理性能测试[J]. 中国原子能科学研究院年报,1992(1): 170-172.
    [15] 李莹,陈鑫,王金宇,等. 圆管通道内过热蒸汽流动换热特性实验研究[J]. 核科学与工程,2022, 42(6): 1331-1336. doi: 10.3969/j.issn.0258-0918.2022.06.015
    [16] DAVIDSON L, DAHLSTRÖM S. Hybrid LES-RANS: an approach to make LES applicable at high Reynolds number[J]. International Journal of Computational Fluid Dynamics, 2005, 19(6): 415-427. doi: 10.1080/10618560500242280
    [17] BALAKUMAR P, PARK G I. DNS/LES simulations of separated flows at high Reynolds numbers[C]//45th AIAA Fluid Dynamics Conference. Dallas: American Institute of Aeronautics and Astronautics, 2015. https://doi.org/10.2514/6.2015-2783.
    [18] 俞建阳,王若玉,陈浮,等. 不同亚格子模型的对比分析及其运用[J]. 工程热物理学报,2016, 37(11): 2311-2318.
    [19] KIM M, LIM J, KIM S, et al. Assessment of the wall-adapting local eddy-viscosity model in transitional boundary layer[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113287. doi: 10.1016/j.cma.2020.113287
    [20] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183-200. doi: 10.1023/A:1009995426001
    [21] 陈广亮,徐俊英,张志俭,等. PWR栅元流固共轭传热CFD计算方案研究[J]. 哈尔滨工程大学学报,2018, 39(4): 716-720.
    [22] WANG H, WANG W S, BI Q C. Experimental investigation on boiling heat transfer of high pressure water in a SCWR sub-channel[J]. International Journal of Heat and Mass Transfer, 2017, 105: 799-810. doi: 10.1016/j.ijheatmasstransfer.2016.09.088
    [23] 杨世铭,陶文铨. 传热学[M]. 第四版. 北京: 高等教育出版社,2006: 279.
  • 加载中
图(30) / 表(3)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-09-15
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回