高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HCF三维精细化燃耗特性分析

段倩妮 汪洋 李伟 武俊梅

段倩妮, 汪洋, 李伟, 武俊梅. HCF三维精细化燃耗特性分析[J]. 核动力工程, 2025, 46(4): 117-124. doi: 10.13832/j.jnpe.2024.070038
引用本文: 段倩妮, 汪洋, 李伟, 武俊梅. HCF三维精细化燃耗特性分析[J]. 核动力工程, 2025, 46(4): 117-124. doi: 10.13832/j.jnpe.2024.070038
Duan Qianni, Wang Yang, Li Wei, Wu Junmei. HCF Three-dimensional Refined Burnup Characteristics Analysis[J]. Nuclear Power Engineering, 2025, 46(4): 117-124. doi: 10.13832/j.jnpe.2024.070038
Citation: Duan Qianni, Wang Yang, Li Wei, Wu Junmei. HCF Three-dimensional Refined Burnup Characteristics Analysis[J]. Nuclear Power Engineering, 2025, 46(4): 117-124. doi: 10.13832/j.jnpe.2024.070038

HCF三维精细化燃耗特性分析

doi: 10.13832/j.jnpe.2024.070038
基金项目: 西安交通大学青年拔尖人才计划 (LX6J022)
详细信息
    作者简介:

    段倩妮(1995—),女,博士研究生,现主要从事核燃料研究工作,E-mail: dqn413@stu.xjtu.edu.cn

    通讯作者:

    李 伟,Email: waylee@xjtu.edu.cn

  • 中图分类号: TL277

HCF Three-dimensional Refined Burnup Characteristics Analysis

  • 摘要: 几何形状复杂的螺旋十字燃料(HCF)对燃耗特性研究提出了更高的挑战。传统的同心圆圈式燃耗区域划分方法无法准确地模拟HCF复杂的几何引起的燃料各位置燃耗不同的问题,缺乏相应的三维精细化数值分析方法预测燃耗特性。本文针对HCF提出六面体燃耗区域划分及计算机辅助设计(CAD)几何建模方法,分别以HCF的薄片、最小扭转单元、单根燃料为研究对象,实现三维精细化的燃耗计算,获得不同燃耗下变量分布及235U、 238U、239Pu典型核素在凹、凸处的核子密度及核反应率。结果表明, HCF径向一周快中子通量密度、热中子通量密度、功率密度分布表现出极大的不均匀性,且随着燃料的消耗,其周向不均匀性增强,凸处燃耗较凹处深15.92 MW·d/kg。轴向扭转对燃料凸处物理变量的影响大于凹处。三维精细化的燃耗特性分析可为高保真的HCF中子物理和热工水力、力学等耦合计算提供基础。

     

  • 图  1  创新型燃料设计示意图

    Figure  1.  Schematic Diagram of Innovative Fuel Design

    图  2  HCF几何示意图

    Figure  2.  Geometry Diagram of HCF

    图  3  HCF不同燃耗区域示意图

    Figure  3.  Schematic Diagram of Burnup Region Division of HCF

    图  4  HCF薄片燃耗期keff曲线图

    Figure  4.  Curve Diagram of keff during Burnup of HCF Slice

    图  5  不同燃耗步 HCF 截面功率密度分布示意图

    Figure  5.  Schematic Diagram of Cross-Section Power Density Distribution of HCF Slice in Different Burnup Steps

    图  6  不同燃耗步凹凸处核子密度曲线图

    Figure  6.  Curve Diagram of Nuclide Isotope Density at Concave and Convex Position in Different Burnup Steps

    图  7  不同燃耗步凹凸处核反应率曲线图

    Figure  7.  Curve Diagram of Nuclear Reaction Rate at Concave and Convex Position in Different Burnup Steps

    图  8  最小扭转单元快中子通量密度分布

    Figure  8.  Fast Neutron Flux Distribution of Minimum Twist Unit

    图  9  最小扭转单元热中子通量密度分布

    Figure  9.  Thermal Neutron Flux Distribution of Minimum Twist Unit

    图  10  最小扭转单元功率密度分布

    Figure  10.  Power Density Distribution of Minimum Twist Unit

    图  11  最小扭转单元HCF凸处及凹处燃耗初期及700 d 36 h后轴向功率密度

    Figure  11.  Axial Power Density at the Initial and after 700d 36h at Concave and Convex Position of HCF in Minimum Twist Unit

    图  12  单根HCF功率密度分布

    Figure  12.  Power Density Distribution of Single HCF

    表  1  燃料元件各区域核素成分及材料密度

    Table  1.   Nuclide Composition and Material Density in Each Region of Fuel Element

    区域 核素 密度/(g·cm−3
    方形毒物区域 90Zr, 91Zr, 92Zr, 94Zr, 96Zr,157Gd,93Nb 6.5075
    燃料棒 90Zr, 91Zr, 92Zr, 94Zr,96Zr,235U,238U,241Am,228Th,229Th,
    239Th,232Th,235Np,236Np,237Np,252Cf
    9.7012
    包壳 90Zr, 91Zr, 92Zr, 94Zr, 96Zr,118Sn 6.4987
    冷却剂 1H,16O 0.7172
    下载: 导出CSV

    表  2  不同燃耗步HCF薄片最外侧周向平均功率密度q

    Table  2.   Outer Circumferential Average Power Density Distribution for the HCF Slice in Different Burnup Steps

    燃耗时间 凸处q/(W·cm−3) 凹处q/(W·cm−3)
    0 h 827 734
    6 h 815 726
    36 h 821 728
    100 d 36 h 828 732
    700 d 36 h 881 758
    下载: 导出CSV
  • [1] SHAH M D, GODDARD B, LLOYD C, et al. Investigating material attractiveness for an innovative metallic fuel design[J]. Nuclear Engineering and Design, 2020, 357: 110385. doi: 10.1016/j.nucengdes.2019.110385
    [2] HARDY M M. Geometric transformation for double helical wire rods[D]. Oahu: University of Hawaii, 2004.
    [3] BRITT T, GODDARD B, SHAH M. Innovative fuel design to improve proliferation resistance[J]. Journal of Nuclear Materials Management, 2019, 47(3): 5-8.
    [4] 谢仲生. 核反应堆物理分析[M]. 北京: 原子能出版社,1981: 169-190.
    [5] SHIRVAN K, KAZIMI M S. Nuclear design of helical cruciform fuel rods[C]//Conference on Advances in Reactor Physics - Linking Research, Industry, and Education. Knoxville: American Nuclear Society, Inc. , 2012.
    [6] SILVA R H M, DE SOUZA W F, DA SILVA C A M, et al. Neutronic and thermal hydraulic analysis of a PWR fuel assembly using uranium mononitride[J]. Annals of Nuclear Energy, 2023, 194: 110071. doi: 10.1016/j.anucene.2023.110071
    [7] AKTER Y, SAHADATH M H, REZA F. Assessment of the burnup characteristics of UO2 and MOX fuel in the mixed solid and annular rod configuration[J]. Nuclear Engineering and Design, 2021, 381: 111339. doi: 10.1016/j.nucengdes.2021.111339
    [8] SAENZ B L, JEVREMOVIC T. Burn-cycle-dependent spatial distribution of nuclear fuel actinides and fission products based on the AGENT code[J]. Annals of Nuclear Energy, 2021, 160: 108390. doi: 10.1016/j.anucene.2021.108390
    [9] KIM K M, CHOI N, LEE H G, et al. Practical methods for GPU-based whole-core Monte Carlo depletion calculation[J]. Nuclear Engineering and Technology, 2023, 55(7): 2516-2533. doi: 10.1016/j.net.2023.04.021
    [10] CLARNO K T, PHILIP B, COCHRAN W K, et al. The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code[J]. Nuclear Engineering and Design, 2012, 252: 108-120. doi: 10.1016/j.nucengdes.2012.07.018
    [11] EBIWONJUMI B, LEE H, KIM W, et al. Validation of nuclide depletion capabilities in Monte Carlo code MCS[J]. Nuclear Engineering and Technology, 2020, 52(9): 1907-1916. doi: 10.1016/j.net.2020.02.017
    [12] ISOTALO A, SAHLBERG V. Comparison of neutronics-depletion coupling schemes for burnup calculations[J]. Nuclear Science and Engineering, 2015, 179(4): 434-459. doi: 10.13182/NSE14-35
    [13] GOORLEY T, JAMES M, BOOTH T, et al. Initial MCNP6 release overview[J]. Nuclear Technology, 2012, 180(3): 298-315. doi: 10.13182/NT11-135
    [14] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
    [15] LEPPÄNEN J, PUSA M, VIITANEN T, et al. The Serpent Monte Carlo code: status, development and applications in 2013[J]. Annals of Nuclear Energy, 2015, 82: 142-150.
    [16] ZHENG M Y, TIAN W X, WEI H Y, et al. Development of a MCNP–ORIGEN burn-up calculation code system and its accuracy assessment[J]. Annals of Nuclear Energy, 2014, 63: 491-498. doi: 10.1016/j.anucene.2013.08.020
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-14
  • 修回日期:  2024-09-04
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回