高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核用TP316H钢在不同温度液态铅铋中微动磨损行为试验研究

汪瑶 蔡振兵 宁闯明 高雄 任全耀

汪瑶, 蔡振兵, 宁闯明, 高雄, 任全耀. 核用TP316H钢在不同温度液态铅铋中微动磨损行为试验研究[J]. 核动力工程, 2025, 46(4): 125-136. doi: 10.13832/j.jnpe.2024.070046
引用本文: 汪瑶, 蔡振兵, 宁闯明, 高雄, 任全耀. 核用TP316H钢在不同温度液态铅铋中微动磨损行为试验研究[J]. 核动力工程, 2025, 46(4): 125-136. doi: 10.13832/j.jnpe.2024.070046
Wang Yao, Cai Zhenbing, Ning Chuangming, Gao Xiong, Ren Quanyao. Experimental Study on Fretting Wear Behavior of Nuclear TP316H Steel in Liquid Lead-Bismuth at Different Temperatures[J]. Nuclear Power Engineering, 2025, 46(4): 125-136. doi: 10.13832/j.jnpe.2024.070046
Citation: Wang Yao, Cai Zhenbing, Ning Chuangming, Gao Xiong, Ren Quanyao. Experimental Study on Fretting Wear Behavior of Nuclear TP316H Steel in Liquid Lead-Bismuth at Different Temperatures[J]. Nuclear Power Engineering, 2025, 46(4): 125-136. doi: 10.13832/j.jnpe.2024.070046

核用TP316H钢在不同温度液态铅铋中微动磨损行为试验研究

doi: 10.13832/j.jnpe.2024.070046
基金项目: 四川省科技项目(2022JDJQ0019);中央高校基本科研业务费专项资金(2682024GF004)
详细信息
    作者简介:

    汪 瑶(2001—),男,硕士研究生,现主要从事核材料摩擦磨损方面研究,E-mail: 2843153036@qq.com

    通讯作者:

    蔡振兵,E-mail: czb-jiaoda@126.com

  • 中图分类号: TL34

Experimental Study on Fretting Wear Behavior of Nuclear TP316H Steel in Liquid Lead-Bismuth at Different Temperatures

  • 摘要: 针对液态铅铋共晶合金(LBE)环境下温度对核用TP316H钢微动磨损性能的影响,采用自主搭建的高温液态LBE微动磨损试验装置,研究不同温度下TP316H钢的微动磨损行为。研究了不同温度对其微动磨损性能的影响,分析了不同循环次数下微动磨损的演变规律。结果表明,200℃与300℃时,TP316H钢微动处于混合滑移状态,400℃时微动处于完全滑移状态。温度的升高会加速材料表面及磨屑的软化,同时加剧氧化磨损,导致第三体层的快速形成,减小磨损率,但高温更易发生Ni元素的溶解腐蚀。通过对400℃时磨损演变规律研究发现,微动初期磨损机制表现为剥层磨损与黏着磨损;中间阶段表现为氧化磨损与疲劳磨损;后期则转变为氧化磨损与磨粒磨损,还有少量黏着磨损。

     

  • 图  1  高温液态LBE微动磨损试验装置示意图

    1—升降小车;2—隔热套;3—加热圈;4—铅铋罐;5—热电偶;6—台架;7—音圈电机;8—微动轴;9—夹具;10—加载块;11—管试样;12—对磨副;13—控制器。

    Figure  1.  Schematic Diagram of High Temperature Liquid LBE Fretting Wear Test Device

    图  2  不同温度下TP316H钢的磨痕光镜形貌

    Figure  2.  Light Microscope Micrographs of Worn Scar of TP316H Steel under Different Temperatures

    图  3  不同温度下TP316H钢的磨痕三维形貌和截面轮廓深度图

    Figure  3.  Three Dimensional Morphology and Sectional Depth Profiles of Worn Scar of TP316H Steel under Different Temperatures

    图  4  3种温度下TP316H钢磨痕的磨损数据

    Figure  4.  Wear Data of Worn Scar of TP316H Steel under Three Different Temperatures

    图  5  不同温度下TP316H钢的磨痕SEM形貌与EDS能谱图

    Figure  5.  SEM Morphology amd EDS Spectrum of Worn Scar of TP316H Steel under Different Temperatures

    图  6  不同温度下TP316H钢的磨痕表面XPS谱图

    Figure  6.  XPS Spectra of Worn Scar of TP316H Steel under Different Temperatures

    图  7  400℃时TP316H钢不同循环次数的磨痕光镜形貌

    Figure  7.  Light Microscope Micrographs of Worn Scar of TP316H Steel with Different Cycles at 400℃

    图  8  400℃下TP316H钢不同循环次数的磨痕三维形貌

    Figure  8.  Three Dimensional Morphology of Worn Scar of TP316H Steel with Different Cycles at 400℃

    图  9  400℃下TP316H钢不同循环次数磨痕的截面轮廓深度图

    Figure  9.  Sectional Depth Profiles of Worn Scar of TP316H Steel with Different Cycles at 400℃

    图  10  400℃时TP316H钢不同循环次数磨痕的磨损数据

    Figure  10.  Wear Data of Worn Scar of TP316H Steel with Different Cycles at 400℃

    图  11  400℃时TP316H钢不同循环次数的磨痕SEM形貌

    Figure  11.  SEM Morphology of Worn Scar of TP316H Steel with Different Cycles at 400℃

    图  12  不同温度下TP316H钢的磨损机制示意图

    Figure  12.  Schematic Diagram of the Wear Mechanisms of TP316H Steel under Different Temperatures

    表  1  试验材料主要化学成分

    Table  1.   Main Chemical Composition of Test Materials

    元素 C Si Mn P S Cr Ni Mo Fe
    质量分数/% 0.04~0.10 ≤0.75 ≤0.2 ≤0.04 ≤0.03 16.0~18.0 11.0~14.0 2.0~3.0 余量
    下载: 导出CSV

    表  2  LBE杂质元素含量

    Table  2.   Content of Impurity Elements in LBE

    杂质元素AgCuZnFeCrNiSiAlSnSbMgCdAsTeHgPb
    含量/(mg·kg−1)<5<3<1<5<1<1<10<2<1<1<1<3<1<1<1余量
    下载: 导出CSV

    表  3  微动磨损试验参数

    Table  3.   Fretting Wear Test Parameters

    试验组 温度/℃ 法向
    力/N
    微动
    幅值/μm
    频率/Hz 循环次数
    第一组 200/300/400 10 ±100 5 1×105
    第二组 400 10 ±100 5 1×103/5×103/1×104/5×104
    下载: 导出CSV
  • [1] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011
    [2] CHENG J, ZHU S Y, TAN H, et al. Lead-bismuth liquid metal: lubrication behaviors[J]. Wear, 2019, 430-431: 94-99. doi: 10.1016/j.wear.2019.04.027
    [3] LOEWEN E P, TOKUHIRO A T. Status of research and development of the lead-alloy-cooled fast reactor[J]. Journal of Nuclear Science and Technology, 2003, 40(8): 614-627. doi: 10.1080/18811248.2003.9715398
    [4] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920
    [5] WANG H, XIAO J, WANG H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review[J]. Coatings, 2021, 11(3): 364. doi: 10.3390/coatings11030364
    [6] CAI Z B, LI Z Y, YIN M G, et al. A review of fretting study on nuclear power equipment[J]. Tribology International, 2020, 144: 106095. doi: 10.1016/j.triboint.2019.106095
    [7] 孙达云,高阳,张乐福,等. 新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为[J]. 核动力工程,2023, 44(5): 244-250.
    [8] 任全耀,蒲曾坪,焦拥军,等. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程,2022, 43(S2): 82-87.
    [9] WANG W B, CHENG K, WANG B, et al. Sensitivity study of thermal hydraulics to corrosion of heat exchange tubes in steam generator[J]. Nuclear Engineering and Design, 2023, 402: 112081. doi: 10.1016/j.nucengdes.2022.112081
    [10] WANG W B, ZHANG M, CHENG K, et al. A coupled model of corrosion of the steam generator heat transfer tube[J]. Nuclear Engineering and Design, 2022, 396: 111895. doi: 10.1016/j.nucengdes.2022.111895
    [11] SORIA S R, TOLLEY A, YAWNY A. Running condition and material response fretting maps of incoloy 800 steam generator tubes against AISI 304L pads in air and room temperature[J]. Tribology International, 2019, 135: 408-420. doi: 10.1016/j.triboint.2019.03.027
    [12] 薛颖成,吴宗辉,何建. 考虑微动磨损下蒸汽发生器传热管时变可靠性评估方法[J]. 核动力工程,2024, 45(1): 164-170.
    [13] MING H L, LIU X C, ZHANG Z M, et al. Effect of normal force on the fretting wear behavior of Inconel 690TT against 304 stainless steel in simulated secondary water of pressurized water reactor[J]. Tribology International, 2018, 126: 133-143. doi: 10.1016/j.triboint.2018.05.020
    [14] ZHANG Y S, WU B, MING H L, et al. Fretting corrosion-induced microstructural evolution of alloy 690TT tube in high temperature pressurised water[J]. Corrosion Science, 2022, 209: 110774. doi: 10.1016/j.corsci.2022.110774
    [15] 冯铄,陈旭东,汤瑞,等. 核用TP316H钢在不同介质环境下的微动磨损性能[J]. 中国机械工程,2022, 33(13): 1551-1559,1603. doi: 10.3969/j.issn.1004-132X.2022.13.006
    [16] DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time[J]. Journal of Nuclear Materials, 2012, 423(1-3): 79-86. doi: 10.1016/j.jnucmat.2012.01.007
    [17] DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion of steels for lead alloys cooled ADS[J]. Journal of Nuclear Materials, 2014, 450(1-3): 225-236. doi: 10.1016/j.jnucmat.2013.07.005
    [18] DEL GIACCO M, WEISENBURGER A, MÜLLER G. Fretting of fuel cladding materials for Pb cooled fast reactors—approach to long term prediction using fretting maps[J]. Nuclear Engineering and Design, 2014, 280: 697-703. doi: 10.1016/j.nucengdes.2014.05.043
    [19] DEL GIACCO M, WEISENBURGER A, SPIELER P, et al. Experimental equipment for fretting corrosion simulation in heavy liquid metals for nuclear applications[J]. Wear, 2012, 280-281: 46-53. doi: 10.1016/j.wear.2012.01.018
    [20] CAO Y, HUA K, LI N, et al. Revealing the critical failure factor and sub-surface damage mechanism of 316 stainless steel during fretting corrosion under the molten lead-bismuth eutectic[J]. Tribology International, 2023, 187: 108767. doi: 10.1016/j.triboint.2023.108767
    [21] HUA K, CAO Y, LI N, et al. Revealing fretting corrosion synergistic mechanism of 316 stainless steel in liquid lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2023, 215: 111058. doi: 10.1016/j.corsci.2023.111058
    [22] TORRES H, VARGA M, RIPOLL M R. High temperature hardness of steels and iron-based alloys[J]. Materials Science and Engineering: A, 2016, 671: 170-181. doi: 10.1016/j.msea.2016.06.058
    [23] HUA K, CAO Y, YU X F, et al. Investigation on fretting wear mechanism of 316 stainless steel induced by Ni dissolution during pre-immersion corrosion in the liquid lead-bismuth eutectic (LBE)[J]. Tribology International, 2022, 174: 107772. doi: 10.1016/j.triboint.2022.107772
    [24] 肖龙仁,雷玉成,朱强,等. 不同合金成分的T91/316L焊缝在550℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报,2019, 33(11): 1805-1812. doi: 10.11896/cldb.18060005
    [25] WARMUTH A R, PEARSON S R, SHIPWAY P H, et al. The effect of contact geometry on fretting wear rates and mechanisms for a high strengthsteel[J]. Wear, 2013, 301(1-2): 491-500. doi: 10.1016/j.wear.2013.01.018
    [26] 李好杰,宁闯明,李正阳,等. 904L不锈钢在不同气氛下微动磨损性能研究[J]. 摩擦学学报,2023, 43(10): 1128-1139.
    [27] 宋伟,李万佳,俞树荣,等. 热力耦合下TC4合金微动磨损行为影响的研究[J]. 化工学报,2022, 73(3): 1324-1334.
    [28] 宋伟,尘强,俞树荣,等. TC4合金在不同环境介质中微动磨损行为研究[J]. 稀有金属材料与工程,2020, 49(7): 2393-2399.
    [29] 高玉,于成涛,余中狄,等. 核电站用不锈钢在液态Pb-Bi合金中的腐蚀行为研究进展[J]. 表面技术,2022, 51(2): 144-155.
    [30] MARTINELLI L, VANNEROY F, ROSADO J C D, et al. Nickel solubility limit in liquid lead–bismuth eutectic[J]. Journal of Nuclear Materials, 2010, 400(3): 232-239. doi: 10.1016/j.jnucmat.2010.03.008
    [31] 周恺,谢发勤,吴向清,等. 载荷对TC21钛合金微弧氧化涂层微动磨损性能的影响[J]. 稀有金属材料与工程,2021, 50(8): 2831-2840.
    [32] BERTHIER Y, VINCENT L, GODET M. Fretting fatigue and fretting wear[J]. Tribology International, 1989, 22(4): 235-242. doi: 10.1016/0301-679X(89)90081-9
    [33] WANG S J, YUE T Y, WANG D G, et al. Effect of wear debris on fretting fatigue crack initiation[J]. Friction, 2022, 10(6): 927-943. doi: 10.1007/s40544-021-0543-z
    [34] 辛龙,李杰,陆永浩. Inconel 690合金高温微动磨损特性研究[J]. 摩擦学学报,2015, 35(4): 470-476.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  7
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-11-13
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回