Experimental Study on Fretting Wear Behavior of Nuclear TP316H Steel in Liquid Lead-Bismuth at Different Temperatures
-
摘要: 针对液态铅铋共晶合金(LBE)环境下温度对核用TP316H钢微动磨损性能的影响,采用自主搭建的高温液态LBE微动磨损试验装置,研究不同温度下TP316H钢的微动磨损行为。研究了不同温度对其微动磨损性能的影响,分析了不同循环次数下微动磨损的演变规律。结果表明,200℃与300℃时,TP316H钢微动处于混合滑移状态,400℃时微动处于完全滑移状态。温度的升高会加速材料表面及磨屑的软化,同时加剧氧化磨损,导致第三体层的快速形成,减小磨损率,但高温更易发生Ni元素的溶解腐蚀。通过对400℃时磨损演变规律研究发现,微动初期磨损机制表现为剥层磨损与黏着磨损;中间阶段表现为氧化磨损与疲劳磨损;后期则转变为氧化磨损与磨粒磨损,还有少量黏着磨损。Abstract: In view of the influence of temperature on the fretting wear performance of nuclear TP316H steel in liquid Lead-Bismuth eutectic alloy(LBE), the fretting wear behavior of TP316H steel at different temperatures was studied by using an independent high temperature liquid LBE fretting wear test device. The influence of different temperature on fretting wear performance was studied, and the evolution rule of fretting wear under different cycles was analyzed. The results show that at 200℃ and 300℃, fretting wear behavior regime of TP316H steel is mixed fretting regime, and at 400℃, fretting wear behavior regime is total sliding regime. The increase of temperature will accelerate the softening of the material surface and wear debris, and at the same time aggravate the oxidation wear, resulting in the rapid formation of the third body layer and reduce the wear rate. However, high temperature is more likely to cause dissolution corrosion of Ni element. By studying the wear evolution rule at 400℃, it is found that the wear mechanism at the initial fretting stage is characterized by peeling wear and adhesive wear. The intermediate stage is characterized by oxidation wear and fatigue wear. In the later stage, it turns to oxidation wear, abrasive wear, and a small amount of adhesive wear.
-
Key words:
- Lead-Bismuth eutectic alloy /
- TP316H /
- Temperature, Fretting wear test /
- Wear mechanism
-
表 1 试验材料主要化学成分
Table 1. Main Chemical Composition of Test Materials
元素 C Si Mn P S Cr Ni Mo Fe 质量分数/% 0.04~0.10 ≤0.75 ≤0.2 ≤0.04 ≤0.03 16.0~18.0 11.0~14.0 2.0~3.0 余量 表 2 LBE杂质元素含量
Table 2. Content of Impurity Elements in LBE
杂质元素 Ag Cu Zn Fe Cr Ni Si Al Sn Sb Mg Cd As Te Hg Pb 含量/(mg·kg−1) <5 <3 <1 <5 <1 <1 <10 <2 <1 <1 <1 <3 <1 <1 <1 余量 表 3 微动磨损试验参数
Table 3. Fretting Wear Test Parameters
试验组 温度/℃ 法向
力/N微动
幅值/μm频率/Hz 循环次数 第一组 200/300/400 10 ±100 5 1×105 第二组 400 10 ±100 5 1×103/5×103/1×104/5×104 -
[1] ALEMBERTI A, SMIRNOV V, SMITH C F, et al. Overview of lead-cooled fast reactor activities[J]. Progress in Nuclear Energy, 2014, 77: 300-307. doi: 10.1016/j.pnucene.2013.11.011 [2] CHENG J, ZHU S Y, TAN H, et al. Lead-bismuth liquid metal: lubrication behaviors[J]. Wear, 2019, 430-431: 94-99. doi: 10.1016/j.wear.2019.04.027 [3] LOEWEN E P, TOKUHIRO A T. Status of research and development of the lead-alloy-cooled fast reactor[J]. Journal of Nuclear Science and Technology, 2003, 40(8): 614-627. doi: 10.1080/18811248.2003.9715398 [4] GONG X, SHORT M P, AUGER T, et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors[J]. Progress in Materials Science, 2022, 126: 100920. doi: 10.1016/j.pmatsci.2022.100920 [5] WANG H, XIAO J, WANG H, et al. Corrosion behavior and surface treatment of cladding materials used in high-temperature lead-bismuth eutectic alloy: a review[J]. Coatings, 2021, 11(3): 364. doi: 10.3390/coatings11030364 [6] CAI Z B, LI Z Y, YIN M G, et al. A review of fretting study on nuclear power equipment[J]. Tribology International, 2020, 144: 106095. doi: 10.1016/j.triboint.2019.106095 [7] 孙达云,高阳,张乐福,等. 新型含铝奥氏体不锈钢在超临界水环境下的腐蚀行为[J]. 核动力工程,2023, 44(5): 244-250. [8] 任全耀,蒲曾坪,焦拥军,等. 高温下锆合金包壳切向微动磨蚀行为研究[J]. 核动力工程,2022, 43(S2): 82-87. [9] WANG W B, CHENG K, WANG B, et al. Sensitivity study of thermal hydraulics to corrosion of heat exchange tubes in steam generator[J]. Nuclear Engineering and Design, 2023, 402: 112081. doi: 10.1016/j.nucengdes.2022.112081 [10] WANG W B, ZHANG M, CHENG K, et al. A coupled model of corrosion of the steam generator heat transfer tube[J]. Nuclear Engineering and Design, 2022, 396: 111895. doi: 10.1016/j.nucengdes.2022.111895 [11] SORIA S R, TOLLEY A, YAWNY A. Running condition and material response fretting maps of incoloy 800 steam generator tubes against AISI 304L pads in air and room temperature[J]. Tribology International, 2019, 135: 408-420. doi: 10.1016/j.triboint.2019.03.027 [12] 薛颖成,吴宗辉,何建. 考虑微动磨损下蒸汽发生器传热管时变可靠性评估方法[J]. 核动力工程,2024, 45(1): 164-170. [13] MING H L, LIU X C, ZHANG Z M, et al. Effect of normal force on the fretting wear behavior of Inconel 690TT against 304 stainless steel in simulated secondary water of pressurized water reactor[J]. Tribology International, 2018, 126: 133-143. doi: 10.1016/j.triboint.2018.05.020 [14] ZHANG Y S, WU B, MING H L, et al. Fretting corrosion-induced microstructural evolution of alloy 690TT tube in high temperature pressurised water[J]. Corrosion Science, 2022, 209: 110774. doi: 10.1016/j.corsci.2022.110774 [15] 冯铄,陈旭东,汤瑞,等. 核用TP316H钢在不同介质环境下的微动磨损性能[J]. 中国机械工程,2022, 33(13): 1551-1559,1603. doi: 10.3969/j.issn.1004-132X.2022.13.006 [16] DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion in liquid lead of structural steels for lead-cooled nuclear systems: Preliminary study of the influence of temperature and time[J]. Journal of Nuclear Materials, 2012, 423(1-3): 79-86. doi: 10.1016/j.jnucmat.2012.01.007 [17] DEL GIACCO M, WEISENBURGER A, MUELLER G. Fretting corrosion of steels for lead alloys cooled ADS[J]. Journal of Nuclear Materials, 2014, 450(1-3): 225-236. doi: 10.1016/j.jnucmat.2013.07.005 [18] DEL GIACCO M, WEISENBURGER A, MÜLLER G. Fretting of fuel cladding materials for Pb cooled fast reactors—approach to long term prediction using fretting maps[J]. Nuclear Engineering and Design, 2014, 280: 697-703. doi: 10.1016/j.nucengdes.2014.05.043 [19] DEL GIACCO M, WEISENBURGER A, SPIELER P, et al. Experimental equipment for fretting corrosion simulation in heavy liquid metals for nuclear applications[J]. Wear, 2012, 280-281: 46-53. doi: 10.1016/j.wear.2012.01.018 [20] CAO Y, HUA K, LI N, et al. Revealing the critical failure factor and sub-surface damage mechanism of 316 stainless steel during fretting corrosion under the molten lead-bismuth eutectic[J]. Tribology International, 2023, 187: 108767. doi: 10.1016/j.triboint.2023.108767 [21] HUA K, CAO Y, LI N, et al. Revealing fretting corrosion synergistic mechanism of 316 stainless steel in liquid lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2023, 215: 111058. doi: 10.1016/j.corsci.2023.111058 [22] TORRES H, VARGA M, RIPOLL M R. High temperature hardness of steels and iron-based alloys[J]. Materials Science and Engineering: A, 2016, 671: 170-181. doi: 10.1016/j.msea.2016.06.058 [23] HUA K, CAO Y, YU X F, et al. Investigation on fretting wear mechanism of 316 stainless steel induced by Ni dissolution during pre-immersion corrosion in the liquid lead-bismuth eutectic (LBE)[J]. Tribology International, 2022, 174: 107772. doi: 10.1016/j.triboint.2022.107772 [24] 肖龙仁,雷玉成,朱强,等. 不同合金成分的T91/316L焊缝在550℃高流速液态铅铋共晶合金中的腐蚀行为[J]. 材料导报,2019, 33(11): 1805-1812. doi: 10.11896/cldb.18060005 [25] WARMUTH A R, PEARSON S R, SHIPWAY P H, et al. The effect of contact geometry on fretting wear rates and mechanisms for a high strengthsteel[J]. Wear, 2013, 301(1-2): 491-500. doi: 10.1016/j.wear.2013.01.018 [26] 李好杰,宁闯明,李正阳,等. 904L不锈钢在不同气氛下微动磨损性能研究[J]. 摩擦学学报,2023, 43(10): 1128-1139. [27] 宋伟,李万佳,俞树荣,等. 热力耦合下TC4合金微动磨损行为影响的研究[J]. 化工学报,2022, 73(3): 1324-1334. [28] 宋伟,尘强,俞树荣,等. TC4合金在不同环境介质中微动磨损行为研究[J]. 稀有金属材料与工程,2020, 49(7): 2393-2399. [29] 高玉,于成涛,余中狄,等. 核电站用不锈钢在液态Pb-Bi合金中的腐蚀行为研究进展[J]. 表面技术,2022, 51(2): 144-155. [30] MARTINELLI L, VANNEROY F, ROSADO J C D, et al. Nickel solubility limit in liquid lead–bismuth eutectic[J]. Journal of Nuclear Materials, 2010, 400(3): 232-239. doi: 10.1016/j.jnucmat.2010.03.008 [31] 周恺,谢发勤,吴向清,等. 载荷对TC21钛合金微弧氧化涂层微动磨损性能的影响[J]. 稀有金属材料与工程,2021, 50(8): 2831-2840. [32] BERTHIER Y, VINCENT L, GODET M. Fretting fatigue and fretting wear[J]. Tribology International, 1989, 22(4): 235-242. doi: 10.1016/0301-679X(89)90081-9 [33] WANG S J, YUE T Y, WANG D G, et al. Effect of wear debris on fretting fatigue crack initiation[J]. Friction, 2022, 10(6): 927-943. doi: 10.1007/s40544-021-0543-z [34] 辛龙,李杰,陆永浩. Inconel 690合金高温微动磨损特性研究[J]. 摩擦学学报,2015, 35(4): 470-476. -