Study on Seismic Qualification Test Input for Nuclear Safety Class Valves based on Dynamic Response Characteristics of Pipes
-
摘要: 由于核安全级阀门可能位于不同的构筑物和楼层,所以抗震鉴定输入需要最大程度地包络所有可能情况,国内相关核电规范给出了建议的地震输入的频率和加速度关系,但没有指明其如何制定而来,也没有指引用户如何适应性修改。本文针对此问题进行了研究,通过对典型管道的地震响应特征的分析,归纳了管道系统对地震的放大特性,进而给出地震输入如何确定的理论方法,并对三代核电站给出了指导性加速度和频率要求。对于三代核电站阀门抗震鉴定常用的人工模拟时程多频波法和正弦拍波法,本文中提出的理论方法可以解释工程实践与国内规范之间的差异,同时对鉴定试验中地震输入如何进行适应性修改问题给出了建议。
-
关键词:
- 核安全级阀门 /
- 抗震鉴定 /
- 需要输入运动(RIM) /
- 需要响应谱(RRS)
Abstract: Since nuclear safety class valves may be located in different buildings and floors, the seismic qualification input needs to envelope all possible situations. China’s domestic nuclear power regulations provide the suggested relationship between frequency and acceleration for seismic input, but they do not specify how this was formulated or guide users on how to adapt it. This paper addresses this issue. Through the analysis of the seismic response characteristics of typical pipes, this paper summarizes the amplification characteristics of pipe systems to earthquakes and then provides a theoretical method for determining seismic input. It also offers guiding acceleration and frequency requirements for Generation 3 nuclear power plants. In terms of artificial simulation time history multi-frequency wave method and sinusoidal wave method in the valve seismic qualification commonly used in Generation 3 nuclear power plants, the theoretical method proposed in this paper can explain the differences between engineering practice and domestic regulations, and provide suggestions for problems encountered in qualification tests for adaptation. -
表 1 推荐最大跨距下管道固有频率
Table 1. Pipe Inherent Frequency of Suggested Maximum Spans
名义
直径/英寸外径/mm 壁厚(最小/
最大)/mm最大
跨距/m固有频率
(最小/最大)/Hz1 33.4 2.77/6.35 2.2 14.2/14.4 2 60.3 2.77/8.74 3.0 13.0/14.0 4 114.3 3.05/13.49 4.0 12.3/15.0 6 168.3 3.40/18.26 5.0 10.8/14.2 8 219.1 3.76/23.01 5.5 11.0/15.2 12 323.8 4.57/33.32 7.0 9.4/13.9 16 406.4 6.35/40.49 8.0 9.4/13.3 表 2 国内抗震试验台参数
Table 2. Parameters of Domestic Seismic Test Tables
试验室名称 频率/Hz 位移/mm 加速度/g 负载/t 同济大学 0.1~50 <100 1.2~4 <15 苏州东菱电动台 1~3000 <100 <130 <0.5 中国建筑科学院 0~50 <250 <1.5 <60 中国水利水电院 0~120 <40 <1 <20 北京工业大学 0.4~50 <127 <1 <60 中国地震局 0.5~40 <80 <1 <30 哈尔滨工业大学 0~25 <125 <1.5 <12 福州大学 0.1~50 <250 <1.5 <22 -
[1] 唐永进. 压力管道应力分析[M]. 北京: 中国石化出版社,2003: 197. [2] LIN C W, BOHM G J. Building and equipment seismic response for PWR plants[C]//ASME Paper 76-WA/PVP-14, USA: ASME, 1976. [3] 郑开云,丁多亮. 核电阀门抗震试验方法[J]. 阀门,2017(6): 9-11,15. [4] 谢永诚,王赤虎,窦一康. AP1000 设备鉴定要求及国内现有试验能力[J]. 核动力工程,2011, 32(S1): 159-161. [5] 张丽芹,邱建文,王江波. 核安全级阀门部件的抗震鉴定试验分析和实施[J]. 核动力工程,2014, 35(S1): 133-135. [6] 杜建勇,李朋洲,李琦,等. 单频拍波试验技术研究[J]. 核动力工程,2019, 40(S1): 133-135. -