Numerical Study on the Influence of Thermal-mechanical Coupling Deformation on the Hydraulic Characteristics of Lead-bismuth Pumps
-
摘要: 为了研究热力耦合形变对铅铋合金(LBE)泵水力特性的影响,通过数值计算获取了设计状态下LBE泵的温度场及流场分布特征,研究了热力耦合作用下LBE泵的结构变形,分析了过流部件关键尺寸的变化,并以变形前后的LBE泵为模型进行了全流道数值计算,对比分析了热力耦合形变对LBE泵水力特性的影响。结果表明,热力耦合作用使得LBE泵的叶轮、导叶等关键过流部件在径向、轴向尺寸上均有所增加,且叶片安放角发生变化;热力耦合形变对LBE泵在设计工况下水力特性影响较小;在偏离设计工况下,泵内叶轮区域的扬程增加,导叶区域的能量损失加剧,流动特征被显著改变,水力特性与设计状态下的差异较大。
-
关键词:
- 铅铋合金(LBE)泵 /
- 热力耦合作用 /
- 变形 /
- 水力特性
Abstract: In order to study the influence of thermal-mechanical deformation coupling on the hydraulic characteristics of lead-bismuth eutectic (LBE) pumps, the temperature and flow field distribution characteristics of the LBE pumps in the design state were obtained through numerical simulations. The structural deformation of the LBE pumps considering thermal-mechanical coupling effects was studied, and the changes in key dimensions of the flow passage components were analyzed. The LBE pumps before and after deformation was used as a model for full channel numerical calculations, and the influence of thermal-mechanical coupling deformation on the hydraulic characteristics of the LBE pumps was compared and analyzed. The results indicate that the thermal-mechanical coupling effect induces dimensional expansion in flow passage components such as the impeller and guide vanes of the LBE pump in both radial and axial directions, and the blade angle changes. The thermal-mechanical coupling deformation has a relatively small influence on the hydraulic characteristics of LBE pumps under design conditions. When deviating from the design conditions, the head increases in the impeller area, the energy loss intensifies in the guide vane area, and the flow characteristics are significantly changed, resulting in a significant difference of the hydraulic characteristics compared to the design state. -
表 1 材料在不同温度下的物性参数
Table 1. Physical Parameters of Material at Different Temperatures
材料 T/℃ E/GPa λ/(W·m−1·℃−1) α /(10−6K−1) 耐磨蚀材料 150 205 25.5 11.1 250 198 26.9 11.5 350 191 27.7 11.9 Q235钢 20 202 60.4 11.5 100 198 58.0 12.1 150 195 55.9 12.4 304不锈钢 20 195 14.8 13.5 150 186 17.0 16.6 250 179 18.6 17.4 E—弹性模量;λ—导热系数;α—热膨胀系数;T—温度。 表 2 设计状态与运行状态关键几何参数的差异
Table 2. Difference of Key Geometric Parameters between Design and Operation States
位置 几何参数 设计状态 运行状态 两种状态
差值叶轮 D1/mm 76.58 77.11 0.53 D2/mm 89.95 90.25 0.30 B1/mm 38.65 39.88 1.23 导叶 D3/mm 108.19 108.53 0.34 D4/mm 53.72 53.98 0.26 B2/mm 73.93 74.77 0.84 表 3 不同工况叶轮扬程和导叶损失
Table 3. Head in Impeller and Loss in Guide Vane under Different Operating Conditions
工况 设计状态 运行状态 H1/m H2/m H1/m H2/m (Q/Qd) 0.3 28.20 0.46 30.86 2.73 0.6 37.76 7.22 37.04 7.79 0.7 34.23 5.02 35.76 5.39 0.9 31.09 3.52 31.33 3.56 1.0 28.88 2.63 29.49 3.25 1.1 26.75 1.90 27.38 3.31 1.2 24.92 2.04 27.69 2.90 -
[1] 龙云,袁寿其,朱荣生,等. 核主泵内部流动研究现状与技术发展综述[J]. 排灌机械工程学报,2020(11): 038. [2] 王凯琳,李良星,张双雷,等. 轴流铅铋泵的设计及其水力性能分析[J]. 西安交通大学学报,2020(11): 054. [3] 关醒凡. 现代泵技术手册[M]. 北京: 中国宇航出版社,2011: 241. [4] 杨从新,吕天智,郭艳磊等. 铅铋介质与清水介质在核主泵内流动对比[J]. 液压气动与密封,2023, 43(6): 11-16. doi: 10.3969/j.issn.1008-0813.2023.06.003 [5] 王岩,余红星,郭艳磊等. 液态LBE介质轴流泵压力脉动特性数值研究[J]. 核动力工程,2020, 41(3): 202-207. [6] 张双雷,李良星,宋立明.轴流铅铋泵流场分析及优化[J].核动力工程,2022,43(3):158-164. [7] ZHANG Y , KANG C , ZHU Y , et al. Investigation on the performance and flow characteristics of a liquid lead-bismuth pump[J]. Journal of Mechanical Science and Technology, 2021(3): 1-9. [8] RUO Fu, XIAO, and, et al. Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis[J]. Tsinghua Science & Technology, 2008, 13(5): 587-592. [9] 董亮,白羽,刘厚林,等. 高温高压对冶金用热水循环泵结构强度的影响[J]. 华中科技大学学报: 自然科学版,2015(3): 5. [10] 裴吉,袁寿其,袁建平. 流固耦合作用对离心泵内部流场影响的数值计算[J]. 农业机械学报,2009(12): 6. [11] 朱荣生,郑宝义,王秀礼,等. 1000MWe核反应堆冷却剂泵多场耦合特性分析[J]. 原子能科学技术,2013, 47(5): 784-788. [12] 钟伟源,朱荣生,王秀礼,等. 基于双向流固耦合的核主泵叶轮力学特性[J]. 排灌机械工程学报,2018, 36(6): 9. [13] 朱荣生, 陈一鸣, 安策, 等. 基于流热固耦合的高温熔盐泵转动系统结构应力分析[J]. 排灌机械工程学报,2021, 39(3): 238-243+324. [14] 孔繁余,王婷,王文廷,等. 基于流固耦合的高温泵叶轮应力有限元分析[J]. 江苏大学学报: 自然科学版,2012, 33(3): 5. [15] 孔繁余,夏斌,张慧,等. 基于热-结构耦合的热水循环泵结构强度研究[J]. 机械工程学报,2014, 50(18): 7. [16] MENTER F R. Two-equation Eddy-viscosity Turbulence Models for Engineering Application[J]. AIAA Journal, 1994, 32(8): 1598-1605. doi: 10.2514/3.12149 [17] 吕天智,杨从新,郭艳磊. LFR轴流式冷却剂主泵水力性能研究[J]. 核动力工程,2023, 44(2): 126-132. [18] 张德胜,吴苏青,施卫东,等. 不同湍流模型在轴流泵叶顶间隙模拟中的应用与验证[J]. 农业工程学报,2013, 29(13): 46-53. doi: 10.3969/j.issn.1002-6819.2013.13.007 [19] 杨从新,刘满,王秀勇,等. 动静叶栅间隙对钠冷快堆二回路泵压力脉动的影响[J]. 核动力工程,2020, 41(1): 127-133. -