高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性研究

刘浩 马在勇 连强 刘纲阳 谭煦滨 张卢腾 周文雄 潘良明

刘浩, 马在勇, 连强, 刘纲阳, 谭煦滨, 张卢腾, 周文雄, 潘良明. 螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性研究[J]. 核动力工程, 2025, 46(4): 85-93. doi: 10.13832/j.jnpe.2024.070059
引用本文: 刘浩, 马在勇, 连强, 刘纲阳, 谭煦滨, 张卢腾, 周文雄, 潘良明. 螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性研究[J]. 核动力工程, 2025, 46(4): 85-93. doi: 10.13832/j.jnpe.2024.070059
Liu Hao, Ma Zaiyong, Lian Qiang, Liu Gangyang, Tan Xubin, Zhang Luteng, Zhou Wenxiong, Pan Liangming. Feasibility Study on Special-shaped Impedance Void Meter for Measuring Void Fraction in Helical Cruciform Rod Bundle Channel[J]. Nuclear Power Engineering, 2025, 46(4): 85-93. doi: 10.13832/j.jnpe.2024.070059
Citation: Liu Hao, Ma Zaiyong, Lian Qiang, Liu Gangyang, Tan Xubin, Zhang Luteng, Zhou Wenxiong, Pan Liangming. Feasibility Study on Special-shaped Impedance Void Meter for Measuring Void Fraction in Helical Cruciform Rod Bundle Channel[J]. Nuclear Power Engineering, 2025, 46(4): 85-93. doi: 10.13832/j.jnpe.2024.070059

螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性研究

doi: 10.13832/j.jnpe.2024.070059
基金项目: 国家自然科学基金(U23B2068)
详细信息
    作者简介:

    刘 浩(1996—),男,博士研究生,现主要从事核反应堆热工水力分析研究,E-mail: haoliu_hl@stu.cqu.edu.cn

    通讯作者:

    连 强,E-mail: lianq@cqu.edu.cn

  • 中图分类号: TL334

Feasibility Study on Special-shaped Impedance Void Meter for Measuring Void Fraction in Helical Cruciform Rod Bundle Channel

  • 摘要: 阻抗空泡仪是测量两相流中截面平均空泡份额的重要手段。然而,由于螺旋十字棒束通道属于高度异化的通道类型,导致阻抗空泡仪电场分布不均匀,从而对空泡份额的测量造成一定困扰。本文基于模拟和实验验证了螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性。结果表明,在低空泡份额下,接收极无量纲电压随着空泡份额的增加单调增加,这说明异形阻抗空泡仪受螺旋十字结构的影响较小且能够在低空泡份额下被标定;通过理论模型的计算,异形阻抗空泡仪整体上平均绝对百分比误差不超过24%;螺旋节距的变化对空泡份额测量的影响较小,且在不同扭转角截面上,空泡仪电极形状并不影响无量纲电压和空泡份额之间的单调关系,说明了异形阻抗空泡仪测量空泡份额具有可行性。

     

  • 图  1  计算域几何模型示意图

    Figure  1.  Schematic Diagram of Computational Domain Geometric Model

    图  2  截面尺寸  mm

    Figure  2.  Cross-sectional Dimensions

    图  3  计算域网格

    Figure  3.  Computational Domain Grid

    图  4  异形阻抗空泡仪测量系统

    Figure  4.  Special-shaped Impedance Void Meter System

    图  5  模拟结果与实验结果的对比

    Figure  5.  Comparison between Simulation Results and Experimental Results

    图  6  电场分布

    Figure  6.  Electric Field Distribution

    图  7  气泡位置对电场分布的影响

    位置1~4指的是放置的球形气泡在流场中的位置。

    Figure  7.  Influence of Bubble Position on the Distribution of Electric Field

    图  8  接收极无量纲电压

    Figure  8.  Dimensionless Voltage of Receiving Electrode

    图  9  接收极无量纲电压与气泡直径的关系(位置1)

    Figure  9.  Relationship between Dimensionless Voltage of Receiving Electrode and Bubble Diameter (Position 1)

    图  10  不同结构对接收极无量纲电压的影响(位置1)

    Figure  10.  Influence of Different Structures on the Dimensionless Voltage of Receiving Electrode (Position 1)

    图  11  不同结构中空泡份额实际值与理论值之间的对比

    Figure  11.  Comparison between the Actual and Theoretical Values of Void Fraction in Different Structures

    图  12  空泡份额实际值与理论值之间的对比

    Figure  12.  Comparison between the Actual and Theoretical Values of Void Fraction

    图  13  不同扭转角截面示意图

    Figure  13.  Schematic Diagram of Different Twist-angle Cross-section

    图  14  不同扭转角截面处接收极无量纲电压随空泡份额变化示意图

    Figure  14.  Dimensionless Voltage Variation at Different Void Fraction along the Twist-angle Cross-section of Receiving Electrode

    表  1  扭转角变化范围

    Table  1.   Variation Range of Twist Angle

    结构编号螺旋节距/mm电极的扭转角变化范围/(°)
    130039.0~51.0
    250041.4~48.6
    3150043.8~46.2
    下载: 导出CSV

    表  2  不同材料的电导率和相对介电常数

    Table  2.   Electric Conductivity and Relative Permittivity of Different Materials

    材料电导率/(S·m−1相对介电常数
    聚甲基丙烯酸甲酯1.0×10−133.0
    0.0380.0
    空气2.0×10−161.0
    316不锈钢1.5×1065.0
    下载: 导出CSV
  • [1] PETROV Y V, ERYKALOV A N, ONEGIN M S. The fuel cycle of reactor PIK [C]// Argonne National Laboratory. Proceedings of the 24th international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). San Carlos de Bariloche: IAEA, 2002.
    [2] CONBOY T M, MCKRELL T J, Kazimi M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58
    [3] CONBOY T M, MCKRELL T J, KAZIMI M S. Evaluation of helical-cruciform fuel rod assemblies for high-power-density LWRs[J]. Nuclear Technology, 2014, 188(2): 139-153. doi: 10.13182/NT13-104
    [4] SHIRVAN K. Development of optimized core design and analysis methods for high power density BWRs[D]. Cambridge: Massachusetts Institute of Technology, 2013.
    [5] CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111
    [6] XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428
    [7] ZHANG Q, LIU L, XIAo Y, et al. Experimental study on the transverse mixing of 5×5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582
    [8] JIANG D Q, ZHANG D L, TIAN W X, et al. Experimental study on flow and heat transfer of medium-prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125312. doi: 10.1016/j.ijheatmasstransfer.2024.125312
    [9] 傅俊森,肖瑶,陈硕,等. 19棒束螺旋十字燃料组件临界热流密度实验研究[J]. 核动力工程,2024, 45(3): 132-138.
    [10] 丛腾龙,高勇,程毅,等. 螺旋十字燃料组件沸腾传热及燃料元件热力耦合特性研究[J]. 核动力工程,2023, 44(5): 216-222.
    [11] 张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436
    [12] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593
    [13] PARANJAPE S S. Two-phase flow interfacial structures in a rod bundle geometry[D]. West Lafayette: Purdue University, 2009.
    [14] CHEN S W, LIU Y, HIBIKI T, et al. Experimental study of air–water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 168-181. doi: 10.1016/j.ijheatfluidflow.2011.09.012
    [15] YU B, ZHOU W X, PAN L M, et al. Void fraction measurement of the air-water two-phase flow in the sub-channel of a rod bundle geometry based on an impedance meter[J]. Annals of Nuclear Energy, 2018, 115: 480-486. doi: 10.1016/j.anucene.2018.02.018
    [16] REN Q Y, ZHOU W X, DU S J, et al. Sub-channel flow regime maps in vertical rod bundles with spacer grids[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1138-1152. doi: 10.1016/j.ijheatmasstransfer.2018.01.133
    [17] YE T P, PAN L M, REN Q Y, et al. Experimental study on distribution parameter characteristics in vertical rod bundles[J]. International Journal of Heat and Mass Transfer, 2019, 132: 593-605. doi: 10.1016/j.ijheatmasstransfer.2018.12.008
    [18] CHEN S W, RUAN P S, LIN M S, et al. Experimental investigation on local/global void distribution of air-water two-phase flow in a 3×3 rod bundle channel under low-flow conditions[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108623. doi: 10.1016/j.ijheatfluidflow.2020.108623
    [19] WAN J, GAO L, SUN W, et al. Experimental investigation on effect of rod bowing on subchannel void fraction in 5 × 5 rod bundles[J]. Progress in Nuclear Energy, 2024, 170: 105125. doi: 10.1016/j.pnucene.2024.105125
    [20] XIONG J B, XIE H, DU S J, et al. Experimental measurement of bubbly two-phase flow in a 4x4 rod bundle with wire mesh sensor[J]. Applied Thermal Engineering, 2023, 218: 119294. doi: 10.1016/j.applthermaleng.2022.119294
    [21] GUI M, WANG T, LIU Z H, et al. Void fractions in a rod bundle geometry at high pressure–part Ⅰ: experimental study[J]. International Journal of Multiphase Flow, 2020, 122: 103146. doi: 10.1016/j.ijmultiphaseflow.2019.103146
    [22] REN Q Y, PAN L M, ZHOU W X, et al. Phase distribution characteristics of bubbly flow in 5 × 5 vertical rod bundles with mixing vane spacer grids[J]. Experimental Thermal and Fluid Science, 2018, 96: 451-459. doi: 10.1016/j.expthermflusci.2018.04.002
    [23] Maxwell J C A. A Treatise On Electricity and Magnetism[J]. Nature, 1873, 7(182): 478-480.
    [24] BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(8): 665-679. doi: 10.1002/andp.19354160802
    [25] KANG R Q, XIONG Z Q, GU Z H, et al. Experimental study of swirling flow pattern at the swirler outlet using a Wire-Mesh sensor[J]. Chemical Engineering Science, 2024, 295: 120166. doi: 10.1016/j.ces.2024.120166
    [26] BAO R Q, LIU L, LIU S, et al. Numerical analysis and structural optimization of a DLC coated capacitance wire-mesh sensor for measuring liquid metal-gas two-phase distribution[J]. Annals of Nuclear Energy, 2024, 205: 110590. doi: 10.1016/j.anucene.2024.110590
    [27] GRIFFITHS M J. A scalability study of one-dimensional two-phase flow drift-flux closure relations for use in RELAP5 rod bundles and new, well-scaled low liquid flow rod bundle data[D]. West Lafayette: Purdue University, 2012.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-09-24
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回