Feasibility Study on Special-shaped Impedance Void Meter for Measuring Void Fraction in Helical Cruciform Rod Bundle Channel
-
摘要: 阻抗空泡仪是测量两相流中截面平均空泡份额的重要手段。然而,由于螺旋十字棒束通道属于高度异化的通道类型,导致阻抗空泡仪电场分布不均匀,从而对空泡份额的测量造成一定困扰。本文基于模拟和实验验证了螺旋十字棒束通道内异形阻抗空泡仪测量空泡份额的可行性。结果表明,在低空泡份额下,接收极无量纲电压随着空泡份额的增加单调增加,这说明异形阻抗空泡仪受螺旋十字结构的影响较小且能够在低空泡份额下被标定;通过理论模型的计算,异形阻抗空泡仪整体上平均绝对百分比误差不超过24%;螺旋节距的变化对空泡份额测量的影响较小,且在不同扭转角截面上,空泡仪电极形状并不影响无量纲电压和空泡份额之间的单调关系,说明了异形阻抗空泡仪测量空泡份额具有可行性。Abstract: Impedance void meter is an important tool for measuring the average void fraction in two-phase flows. However, due to the highly heterogeneous nature of the helical cruciform rod bundle channel, the impedance void meter has uneven electric field distribution, which poses certain challenges to measuring void fraction. This paper verifies the feasibility of using a special-shaped impedance void meter to measure void fraction in a helical cruciform rod bundle channel through simulations and experiments. The results show that at low void fraction, the dimensionless voltage at the receiving electrode increases monotonically with increasing void fraction, indicating that the special-shaped impedance void meter is subject to little influence of helical cruciform structure and can be calibrated at low void fraction. The overall average error of the special-shaped impedance void meter does not exceed 24% according to theoretical model calculations. The magnitude of the helical pitch exerts little influence on the measurement of the void fraction, and the geometry of the electrode within the void meter across various twist angle sections does not alter the monotonic relationship between dimensionless voltage and void fraction. This suggests that utilizing a special-shaped impedance void meter for measuring void fraction is feasible.
-
Key words:
- Impedance void meter /
- Special shape /
- Helical cruciform fuel /
- Two-phase flow /
- Void fraction
-
表 1 扭转角变化范围
Table 1. Variation Range of Twist Angle
结构编号 螺旋节距/mm 电极的扭转角变化范围/(°) 1 300 39.0~51.0 2 500 41.4~48.6 3 1500 43.8~46.2 表 2 不同材料的电导率和相对介电常数
Table 2. Electric Conductivity and Relative Permittivity of Different Materials
材料 电导率/(S·m−1) 相对介电常数 聚甲基丙烯酸甲酯 1.0×10−13 3.0 水 0.03 80.0 空气 2.0×10−16 1.0 316不锈钢 1.5×106 5.0 -
[1] PETROV Y V, ERYKALOV A N, ONEGIN M S. The fuel cycle of reactor PIK [C]// Argonne National Laboratory. Proceedings of the 24th international meeting on Reduced Enrichment for Research and Test Reactors (RERTR). San Carlos de Bariloche: IAEA, 2002. [2] CONBOY T M, MCKRELL T J, Kazimi M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58 [3] CONBOY T M, MCKRELL T J, KAZIMI M S. Evaluation of helical-cruciform fuel rod assemblies for high-power-density LWRs[J]. Nuclear Technology, 2014, 188(2): 139-153. doi: 10.13182/NT13-104 [4] SHIRVAN K. Development of optimized core design and analysis methods for high power density BWRs[D]. Cambridge: Massachusetts Institute of Technology, 2013. [5] CONG T L, XIAO Y, WANG B C, et al. Numerical study on the boiling heat transfer and critical heat flux in a simplified fuel assembly with 2×2 helical cruciform rods[J]. Progress in Nuclear Energy, 2022, 145: 104111. doi: 10.1016/j.pnucene.2021.104111 [6] XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428 [7] ZHANG Q, LIU L, XIAo Y, et al. Experimental study on the transverse mixing of 5×5 helical cruciform fuel assembly by wire mesh sensor[J]. Annals of Nuclear Energy, 2021, 164: 108582. doi: 10.1016/j.anucene.2021.108582 [8] JIANG D Q, ZHANG D L, TIAN W X, et al. Experimental study on flow and heat transfer of medium-prandtl-number fluid along a hexagonal helical cruciform seven-rods[J]. International Journal of Heat and Mass Transfer, 2024, 224: 125312. doi: 10.1016/j.ijheatmasstransfer.2024.125312 [9] 傅俊森,肖瑶,陈硕,等. 19棒束螺旋十字燃料组件临界热流密度实验研究[J]. 核动力工程,2024, 45(3): 132-138. [10] 丛腾龙,高勇,程毅,等. 螺旋十字燃料组件沸腾传热及燃料元件热力耦合特性研究[J]. 核动力工程,2023, 44(5): 216-222. [11] 张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436 [12] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593 [13] PARANJAPE S S. Two-phase flow interfacial structures in a rod bundle geometry[D]. West Lafayette: Purdue University, 2009. [14] CHEN S W, LIU Y, HIBIKI T, et al. Experimental study of air–water two-phase flow in an 8×8 rod bundle under pool condition for one-dimensional drift-flux analysis[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 168-181. doi: 10.1016/j.ijheatfluidflow.2011.09.012 [15] YU B, ZHOU W X, PAN L M, et al. Void fraction measurement of the air-water two-phase flow in the sub-channel of a rod bundle geometry based on an impedance meter[J]. Annals of Nuclear Energy, 2018, 115: 480-486. doi: 10.1016/j.anucene.2018.02.018 [16] REN Q Y, ZHOU W X, DU S J, et al. Sub-channel flow regime maps in vertical rod bundles with spacer grids[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1138-1152. doi: 10.1016/j.ijheatmasstransfer.2018.01.133 [17] YE T P, PAN L M, REN Q Y, et al. Experimental study on distribution parameter characteristics in vertical rod bundles[J]. International Journal of Heat and Mass Transfer, 2019, 132: 593-605. doi: 10.1016/j.ijheatmasstransfer.2018.12.008 [18] CHEN S W, RUAN P S, LIN M S, et al. Experimental investigation on local/global void distribution of air-water two-phase flow in a 3×3 rod bundle channel under low-flow conditions[J]. International Journal of Heat and Fluid Flow, 2020, 85: 108623. doi: 10.1016/j.ijheatfluidflow.2020.108623 [19] WAN J, GAO L, SUN W, et al. Experimental investigation on effect of rod bowing on subchannel void fraction in 5 × 5 rod bundles[J]. Progress in Nuclear Energy, 2024, 170: 105125. doi: 10.1016/j.pnucene.2024.105125 [20] XIONG J B, XIE H, DU S J, et al. Experimental measurement of bubbly two-phase flow in a 4x4 rod bundle with wire mesh sensor[J]. Applied Thermal Engineering, 2023, 218: 119294. doi: 10.1016/j.applthermaleng.2022.119294 [21] GUI M, WANG T, LIU Z H, et al. Void fractions in a rod bundle geometry at high pressure–part Ⅰ: experimental study[J]. International Journal of Multiphase Flow, 2020, 122: 103146. doi: 10.1016/j.ijmultiphaseflow.2019.103146 [22] REN Q Y, PAN L M, ZHOU W X, et al. Phase distribution characteristics of bubbly flow in 5 × 5 vertical rod bundles with mixing vane spacer grids[J]. Experimental Thermal and Fluid Science, 2018, 96: 451-459. doi: 10.1016/j.expthermflusci.2018.04.002 [23] Maxwell J C A. A Treatise On Electricity and Magnetism[J]. Nature, 1873, 7(182): 478-480. [24] BRUGGEMAN D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[J]. Annalen der Physik, 1935, 416(8): 665-679. doi: 10.1002/andp.19354160802 [25] KANG R Q, XIONG Z Q, GU Z H, et al. Experimental study of swirling flow pattern at the swirler outlet using a Wire-Mesh sensor[J]. Chemical Engineering Science, 2024, 295: 120166. doi: 10.1016/j.ces.2024.120166 [26] BAO R Q, LIU L, LIU S, et al. Numerical analysis and structural optimization of a DLC coated capacitance wire-mesh sensor for measuring liquid metal-gas two-phase distribution[J]. Annals of Nuclear Energy, 2024, 205: 110590. doi: 10.1016/j.anucene.2024.110590 [27] GRIFFITHS M J. A scalability study of one-dimensional two-phase flow drift-flux closure relations for use in RELAP5 rod bundles and new, well-scaled low liquid flow rod bundle data[D]. West Lafayette: Purdue University, 2012. -