Prediction Technology for Transient Operations of Small Modular PWR Based on SEQ2SEQ and ARIMA Hybrid Prediction Model
-
摘要: 为确保海洋条件下反应堆运行的安全可靠运行,提升海洋条件下的热工运行参数长期预测准确性,本文基于IP200的海洋条件下小型模块化压水堆一维仿真模型的热工运行数据,提出序列到序列(SEQ2SEQ)与自回归差分移动平均模型(ARIMA)的组合预测模型,首先利用ARIMA进行数据的特征提取,随后利用SEQ2SEQ预测振荡值。反应堆在海洋条件下运行时易造成系统内部液面的晃荡,进而导致其他运行参数发生波动。对稳压器压力、冷却剂流量、蒸汽发生器蒸汽出口流量三种不同振荡特征的热工运行参数的预测结果表明:较单独使用ARIMA、SEQ2SEQ模型与传统长短期记忆网络(LSTM)模型相比,预测精度提升约一个数量级。本研究提出的ARIMA和SEQ2SEQ组合预测模型具有计算速度快、预测精度高的特点,为海洋条件下小型模块化压水堆的潜在故障预测提供了一种有效方法。Abstract: To ensure the safe and reliable operation of reactors under ocean conditions, the long-term prediction accuracy of thermal operation parameters under ocean conditions is improved. Based on the thermal operation data of the one-dimensional simulation model of a small modular PWR IP200 under ocean conditions, this study proposes a prediction model combining sequence to sequence (SEQ2SEQ) and autoregressive integrated moving average (ARIMA). First, ARIMA is used to extract the features of the data, and then SEQ2SEQ is used to predict the oscillation value. When the reactor is operating under ocean conditions, it is easy to cause the sloshing of the liquid level inside the system, which in turn causes oscillation in other operating parameters. The prediction results of three thermal operation parameters with different oscillation characteristics, namely, pressurizer pressure, coolant flow, and steam generator steam outlet flow, show that the prediction accuracy is improved by about one order of magnitude, compared with that of using ARIMA model, SEQ2SEQ model and traditional Long Short-Term Memory (LSTM) model alone. The prediction model combining ARIMA and SEQ2SEQ proposed in this study has features of fast calculation speed and high prediction accuracy, which provides an effective method for the prediction of potential failures of small modular PWR under ocean condition.
-
表 1 反应堆基本热工运行参数
Table 1. Basic Thermal Operation Parameters of the Reactor
参数名 参数值 一回路压力/MPa 15.5 冷却剂流量/(kg·s−1) 809 冷却剂入口温度/K 555 冷却剂出口温度/K 600 反应堆加热功率/MW 220 二回路压力/MPa 3.0 二回路给水流量/(kg·s−1) 83.7 二回路给水温度/K 373 出口蒸汽温度/K 554 表 2 SEQ2SEQ模型超参数
Table 2. Hyper-parameters of SEQ2SEQ Model
超参数 设置情况 LSTM层数 2 初始学习率 0.005 输入序列长度 Study Samples 输出序列长度 Prediction Length 迭代次数 200(组合预测)/800(单独预测) 目标函数 均方误差(MSE) 训练优化算法 SGD 表 3 冷却剂流量预测MSE
Table 3. Prediction MSE of Coolant Flow Rate
预测时长/s 各模型的MSE LSTM ARIMA SEQ2SEQ ARIMA与SEQ2SEQ组合 10 0.0055 0.0030 0.0030 0.0013 30 0.0068 0.0052 0.0051 0.0050 50 0.0085 0.0079 0.0079 0.0078 表 4 一回路压力预测MSE
Table 4. Prediction MSE of Primary Circuit Pressure
预测时长/s 各模型的MSE LSTM ARIMA SEQ2SEQ ARIMA与SEQ2SEQ组合 10 0.0056 0.0043 0.0041 1.8×10–5 30 0.0044 0.0064 0.0031 9.9×10–5 50 0.0038 0.0084 0.0022 1.4×10–4 表 5 蒸汽发生器出口蒸汽流量引入噪声数据预测MSE
Table 5. Prediction MSE of Steam Outlet Flow Rate with Noise Data Introduced
预测时长/s 各模型的MSE LSTM ARIMA SEQ2SEQ ARIMA与SEQ2SEQ组合 10 0.0084 0.025 0.014 0.0025 30 0.0180 0.038 0.021 0.0088 50 0.0280 0.051 0.026 0.0130 -
[1] WANG C Y, ZHANG H N, LI X B, et al. A data-driven online prediction method for surface-deformed liquid level in vessels under ocean conditions[J]. Nuclear Engineering and Design, 2023, 414: 112571. doi: 10.1016/j.nucengdes.2023.112571 [2] KO Y, SEO H, CHO H K, et al. SBLOCA analysis of a floating nuclear reactor under ocean conditions using MARS-KS moving reactor model[J]. Progress in Nuclear Energy, 2024, 168: 105017. doi: 10.1016/j.pnucene.2023.105017 [3] 魏天一,张彪,李东阳,等. 海洋条件下小型堆稳压器液位智能预测研究[J]. 哈尔滨工程大学学报,2023, 44(9): 1590-1596. doi: 10.11990/jheu.202201031 [4] KIM S, KO W, NAM H, et al. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost[J]. Nuclear Engineering and Technology, 2017, 49(5): 1063-1070. doi: 10.1016/j.net.2017.05.007 [5] 朱少民,夏虹,吕新知,等. 基于ARIMA和LSTM组合模型的核电厂主泵状态预测[J]. 核动力工程,2022, 43(2): 246-253. [6] 侯秦脉,朱伟,邹象,等. 基于ARIMA-LSTM模型的核电厂运行事件变化分析及预测[J]. 核技术,2022, 45(12): 120602. doi: 10.11889/j.0253-3219.2022.hjs.45.120602 [7] XU S W, WANG Y J, XU X L, et al. A multi-step wind power group forecasting seq2seq architecture with spatial–temporal feature fusion and numerical weather prediction correction[J]. Energy, 2024, 291: 130352. doi: 10.1016/j.energy.2024.130352 [8] ZHOU G Y, HU G F, ZHANG D X, et al. A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model[J]. Energy, 2023, 283: 128986. doi: 10.1016/j.energy.2023.128986 [9] STEFENON S F, SEMAN L O, AQUINO L S, et al. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants[J]. Energy, 2023, 274: 127350. doi: 10.1016/j.energy.2023.127350 [10] ZHANG Y, LI Y T, ZHANG G Y. Short-term wind power forecasting approach based on Seq2Seq model using NWP data[J]. Energy, 2020, 213: 118371. doi: 10.1016/j.energy.2020.118371 [11] 刘建阁,彭敏俊,蒋立国. 多用途一体化轻水堆初步设计方案和安全分析[J]. 原子能科学技术,2009, 43(S2): 210-214. [12] 程坤,谭思超,陈莹莹,等. 海洋条件反应堆热工水力系统分析程序开发及验证[J]. 哈尔滨工程大学学报,2017, 38(8): 1223-1230. -