Research on the Influence of Scaling Ratio on the Integral Hydraulic Characteristics of Reactor
-
摘要: 为了研究模化比例对反应堆整体水力特性的影响,本文基于相似理论,根据几何相似和欧拉数(Eu)相似模化设计了1∶1、3∶5和1∶5比例的实验本体,并在三套比例的实验本体上开展了反应堆原型流速下的流量分配实验、下腔室交混特性实验和下腔室流场实验。对比研究结果发现,实验工况下各比例本体内的流动均已进入自模区,流场彼此相似。模化比例对堆芯入口处流量分配因子、交混系数以及下腔室流场的影响比较小,其中不同比例本体内流量分配因子差异小于0.02,交混系数差异小于0.1。本研究可为整体水力学比例模化方法失真度的评估提供依据,为反应堆热工水力设计和实验研究提供参考。Abstract: In order to study the influence of scaling ratio on the integral hydraulic characteristics of the reactor, 1∶1, 3∶5, and 1∶5 scaled mock-ups are designed based on geometric similarity and Euler number similarity, and flow distribution test, lower plenum mixing characteristics test and lower plenum flow field tests are conducted on three scaled mock-ups at a velocity of reactor prototype in this paper. The comparative results reveal the flows in 1∶1, 3∶5, and 1∶5 scaled mock-ups have entered self-simulation region and the flow fields are similar to each other. The scaling ratio has little influence on the flow distribution factors, mixing coefficients and flow fields in lower plenum at inlet of reactor core. Specifically, the difference in flow distribution factors between different scaling ratio mock-ups is less than 0.02, and the difference in mixing coefficients is less than 0.1. This study can provide a basis for evaluating the distortion of hydraulic modeling method, as well as a reference for reactor thermal hydraulic design and experimental research.
-
Key words:
- Scaling ratio /
- Flow distribution /
- Mixing /
- Flow field
-
表 1 实验模型参数
Table 1. Experimental Model Parameters
参数 1∶1模型 3∶5模型 1∶5模型 模型总高/mm 4010 2406 802 模型总宽/mm 2300 1380 460 入口流量/(m3·h−1) ~1365 ~492 ~54.6 入口截面/(mm×mm) 265×215 159×129 53×43 入口管处Re/105 10.2 6.1 2.0 流量分配器处Re/105 3.2 1.9 0.6 -
[1] HETSRONI G. Use of hydraulic models in nuclear reactor design[R]. Pittsburgh: Westinghouse Elecrtic Corporation, 1965. [2] EUH D J, KWON T S, YOUN Y J, et al. Hydraulic characteristics of SMART reactor for a nominal condition[C]//Proceedings of the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. Malta: International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2012. [3] LEE K B, IM I Y, LEE B J, et al. YGN 3 & 4 reactor flow model test[J]. Nuclear Engineering and Technology, 1991, 23(3): 340-351. [4] EUH D J, KIM K H, YOUN Y J, et al. A flow and pressure distribution of APR+ reactor under the 4-pump running conditions with a balanced flow rate[J]. Nuclear Engineering and Technology, 2012, 44(7): 735-744. doi: 10.5516/NET.02.2012.715 [5] 杨来生,宗桂芳,胡俊. 秦山核电二期工程反应堆水力模拟实验研究[J]. 核动力工程,2003, 24(S2): 208-211,226. [6] 王盛,杨来生,李朋洲,等. CNP1000反应堆下空腔交混及压降试验研究[J]. 原子能科学技术,2007,41(S1): 151-155. [7] 丁雷,陈星,王典乐,等. ACP100反应堆整体水力模拟试验研究[J]. 核动力工程,2023, 44(S1): 29-34. [8] 汪春宇,彭帆,邢军,等. 小型压水堆下腔室交混特性实验研究[J]. 核动力工程,2021, 42(5): 96-102. [9] 余凡. CAP1400反应堆堆芯入口流量分配试验研究[D]. 上海: 上海交通大学,2017. [10] 眭曦,王盛,杨祖毛,等. 中国工程试验堆堆芯入口流量分配特性实验研究[J]. 原子能科学技术,2020, 54(2): 257-263. doi: 10.7538/yzk.2019.youxian.0105 [11] 李之光. 相似与模化[M]. 北京: 国防工业出版社,1982: 251-255. [12] CHO H K, YUN B J, SONG C H, et al. Experimental validation of the modified linear scaling methodology for scaling ECC bypass phenomena in DVI downcomer[J]. Nuclear Engineering and Design, 2005, 235(21): 2310-2322. doi: 10.1016/j.nucengdes.2005.04.005 [13] 景思睿,张鸣远. 流体力学[M]. 西安: 西安交通大学出版社,2001: 175-178. [14] HETSRONI G. Use of hydraulic models in nuclear reactor design[J]. Nuclear Science and Engineering, 1967, 28(1): 1-11. doi: 10.13182/NSE67-A18661 [15] 杨来生,宗桂芳,胡俊. 秦山核电二期工程反应堆水力模拟实验模型的简化[J]. 核动力工程,2003, 24(S2): 212-215. [16] 章梓雄,董曾南. 粘性流体力学[M]. 第二版. 北京: 清华大学出版社,2011: 219-231. [17] YU H, WANG M J, CAI R, et al. Development and validation of boron diffusion model in nuclear reactor core subchannel analysis[J]. Annals of Nuclear Energy, 2019, 130: 208-217. doi: 10.1016/j.anucene.2019.02.046 [18] SHEN D H, LIU X J, CHENG X. A new turbulent mixing modeling approach for sub-channel analysis code[J]. Annals of Nuclear Energy, 2018, 121: 194-202. doi: 10.1016/j.anucene.2018.07.023 [19] ZHANG G, YANG Y H, GU H Y, et al. Coolant distribution and mixing at the core inlet of PWR in a real geometry[J]. Annuals of Nuclear Energy, 2013, 60: 187-194. doi: 10.1016/j.anucene.2013.05.008 -