Study on the Influence of Geometric Characteristic Parameters on the Neutron Behavior in Four Petal-shaped Helical Fuel Rod
-
摘要: 为弥补四叶形花瓣螺旋燃料棒(FPHF)在中子学计算上的不足,进一步确定FPHF几何特征对其中子行为的影响,本文采用DAG-OpenMC构建了FPHF的精确中子学计算模型。从燃料棒直径、截面形状以及螺旋角三个方面研究了FPHF几何特征对中子行为的影响。燃料棒直径取值为3.5、6.3 mm以及9.5 mm;内凹弧与外凸弧比值的取值范围为[0.1, 3.0];螺旋角取值为[360°, 1080°]。结果表明,燃料棒直径从3.5 mm增大至9.5 mm时,FPHF的径向功率峰因子增大了5.15%,中子注量率分布的不均匀程度增加;内凹弧与外凸弧比值从0.1增大至3.0时,裂变反应速率Rf降低了0.19%,有效增殖系数keff下降了441.5pcm(1pcm=10–5);螺旋角对燃料棒的慢化效应以及径向注量率分布的影响可以忽略不计。因此,除燃料棒的螺旋角外,本文研究的燃料棒直径与截面形状对FPHF的中子学特征均有明显影响。
-
关键词:
- 四叶形花瓣螺旋燃料棒(FPHF) /
- 中子学特性 /
- DAG-OpenMC
Abstract: To address the deficiencies in neutronics calculations of the Four Petal-shaped Helical Fuel Rod (FPHF) and further determine the influence of the geometric characteristics of the FPHF on its neutron behavior, this paper uses DAG-OpenMC to construct an accurate neutronics calculation model of the FPHF. The study examines the impact of the FPHF's geometric characteristics on neutron behavior from three aspects: fuel rod diameter, cross-sectional shape, and helix angle. The fuel rod diameters are set to 3.5 mm, 6.3 mm, and 9.5 mm; the ratio of the concave arc to the convex arc ranges from 0.1 to 3.0; and the helix angle ranges from 360° to 1080°. The results show that when the fuel rod diameter increases from 3.5 mm to 9.5 mm, the radial power peak factor of the FPHF increases by 5.15%, and the non-uniformity of the neutron flux distribution rises. When the ratio of the concave arc to the convex arc increases from 0.1 to 3.0, the fission reaction rate Rf decreases by 0.19%, and the effective multiplication factor drops by 441.5 pcm (1pcm=10–5). The influence of the helix angle on the moderation effect of the fuel rod and the radial flux distribution is negligible. Therefore, except for the helix angle of the fuel rod, both the fuel rod diameter and cross-sectional shape studied in this paper have significant effects on the neutronics characteristics of the FPHF. -
表 1 不同D值下的keff以及六因子
Table 1. keff and Six Factors at Different D Values
D/mm keff keff标准差 p ε f η PFNL PTNL 3.5 1.55410 2.9×10−4 0.62827 1.28971 0.95932 1.99993 0.99999 0.99969 6.3 1.55765 2.8×10−4 0.61841 1.31450 0.95967 1.99942 0.99990 0.99874 9.5 1.56914 3.0×10−4 0.62479 1.31570 0.95736 1.99933 0.99965 0.99761 表 2 D从3.5 mm增加到9.5 mm后六因子对keff的贡献值
Table 2. Contribution Value of the Six Factors to keff for D Value Increasing from 3.5 mm to 9.5 mm
贡献类型 ΔVp ΔVε ΔVf ΔVη $ \Delta V_{P_{\mathrm{FNL}}} $ $ \Delta V_{P_{\mathrm{TNL}}} $ Δkeff 贡献价值 −868.0 +3116.0 −318.5 −46.9 −53.3 −325.4 +1503.7 贡献水平/% −57.7 +207.2 −21.18 −3.1 −3.5 −21.6 +100.0 表 3 不同D值的径向功率峰因子Fq
Table 3. Radial Power Peak Factor at Different D Values
D/mm Fq 3.5 1.0471 9.5 1.1010 表 4 不同D值下的核反应速率
Table 4. Nuclear Reaction Rates at Different D Values
D/mm Ra Rf Rs $ \alpha = {{R_{\text{γ }}^{{}^{235}{\text{U}}}} \mathord{\left/ {\vphantom {{R_{\text{γ }}^{{}^{235}{\text{U}}}} {R_{\text{f}}^{{}^{235}{\text{U}}}}}} \right. } {R_{\text{f}}^{{}^{235}{\text{U}}}}} $ 3.5 0.96850 0.63563 24.30486 0.23898 9.5 0.96501 0.64126 24.73698 0.24193 表 5 不同C值下的keff以及六因子
Table 5. keff and Six Factors at Different C Values
C keff keff标准差 p ε f η PFNL PTNL 0.1 1.57469 3.0×10−4 0.62607 1.31377 0.95908 1.99940 0.99985 0.99853 0.3 1.57342 2.9×10−4 0.62547 1.31403 0.95906 1.99941 0.99985 0.99849 0.6 1.57176 2.8×10−4 0.62446 1.31460 0.95919 1.99938 0.99984 0.998514 0.9 1.57012 3.1×10−4 0.62365 1.31485 0.95922 1.99937 0.99985 0.99855 2.0 1.56661 3.0×10−4 0.62178 1.31580 0.95931 1.99939 0.99984 0.99851 3.0 1.56381 3.2×10−4 0.62069 1.31597 0.95923 1.99939 0.99983 0.99843 表 6 C值从0.1增加到3.0后六因子对keff的贡献值
Table 6. Contribution Value of Six Factors to keff for C Value Increasing from 0.1 to 3.0
贡献类型 ΔVp ΔVε ΔVf ΔVη $ \Delta V_{P_{\mathrm{FNL}}} $ $ \Delta V_{P_{\mathrm{TNL}}} $ Δkeff 贡献价值 −550.1 106.4 9.9 −0.4 −2.9 −6.1 −441.5 贡献水平/% +124.6 −24.1 −2.2 +0.1 +0.6 +1.4 −100.0 表 7 不同C值的径向功率峰因子Fq
Table 7. Radial Power Peak Factor at Different C Values
C Fq 0.1 1.0747 3.0 1.0850 表 8 不同C值下的核反应速率
Table 8. Nuclear Reaction Rates at Different C Values
C Ra Rf Rs $ \alpha = {{R_{\text{γ }}^{{}^{235}{\text{U}}}} \mathord{\left/ {\vphantom {{R_{\text{γ }}^{{}^{235}{\text{U}}}} {R_{\text{f}}^{{}^{235}{\text{U}}}}}} \right. } {R_{\text{f}}^{{}^{235}{\text{U}}}}} $ 0.1 0.96912 0.64478 24.53809 0.24183 3.0 0.96822 0.64351 24.50130 0.24186 表 9 不同β值的径向功率峰因子Fq
Table 9. Radial Power Peak Factor at Different β Values
β/(°) Fq 360 1.0841 540 1.0915 720 1.0830 900 1.0835 1080 1.0892 表 10 不同 β 值下的keff以及六因子
Table 10. keff and Six Factors at Different β Values
β/(°) keff keff标准差 p ε f η PFNL PTNL 360 1.55977 3.0×10−4 0.61845 1.31665 0.95959 1.99937 0.99985 0.99857 540 1.55969 3.0×10−4 0.61842 1.31684 0.95951 1.99938 0.99985 0.99849 720 1.55970 2.7×10−4 0.61844 1.31684 0.95948 1.99937 0.99985 0.99851 900 1.55937 2.7×10−4 0.61804 1.31737 0.95950 1.99935 0.99984 0.99851 1080 1.55935 3.0×10−4 0.61830 1.31697 0.95943 1.99937 0.99984 0.99846 表 11 不同β值下的核反应速率
Table 11. Nuclear Reaction Rates at Different β Values
β/(°) Ra Rf Rs $ \mathit{\mathit{\alpha}}=R_{\text{γ }}^{^{235}\text{U}}\mathord{\left/\vphantom{R_{\text{γ }}^{^{235}\text{U}}R_{\text{f}}^{^{235}\text{U}}}\right.}R_{\text{f}}^{^{235}\text{U}} $ 360 0.96821 0.63735 24.34101 0.24283 540 0.96897 0.63821 24.33805 0.24263 720 0.96785 0.63758 24.37022 0.24256 900 0.96806 0.63782 24.33916 0.24274 1080 0.96945 0.63840 24.34675 0.24254 -
[1] 张薇薇,何正熙,万雪松,等. 小型模块化反应堆控制方法综述[J]. 四川大学学报: 自然科学版,2024, 61(2): 020001. [2] YAN X, WANG P F, QING J Y, et, al. Robust power control design for a small pressurized water reactor using an H infinity mixed sensitivity method[J]. Nuclear Engineering and Technology, 2020, 52(7): 1443-1451. doi: 10.1016/j.net.2019.12.031 [3] BÖSE F, WIMMERS A, STEIGERWALD B, et, al. Questioning nuclear scale-up propositions: availability and economic prospects of light water, small modular and advanced reactor technologies[J]. Energy Research & Social Science, 2024, 110: 103448. [4] 毕夏,史长东,程竹,等. 低碳背景下我国新能源行业利用现状及发展前景分析[J]. 东北电力大学学报,2012, 32(5): 86-90. [5] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593 [6] 蔡伟华,李智明,崔军,等. 含3×3花瓣形燃料棒组件的自然循环系统多尺度耦合模拟研究[J]. 工程热物理学报,2024, 45(1): 32-39. [7] CONG T L, ZHANG Q, ZHU J Z, et al. Transverse mixing characteristics of single-phase flow in the helical cruciform fuel assembly[J]. Annals of Nuclear Energy, 2023, 180: 109427. doi: 10.1016/j.anucene.2022.109427 [8] SHIRVAN K, KAZIMI M S. Three dimensional considerations in thermal-hydraulics of helical cruciform fuel rods for LWR power uprates[J]. Nuclear Engineering and Design, 2014, 270: 259-272. doi: 10.1016/j.nucengdes.2014.01.015 [9] 杜利鹏,蒋泽平,崔军,等. 花瓣形燃料元件棒束通道内过冷流动沸腾特性数值研究[J]. 原子能科学技术,2023, 57(2): 264-275. [10] 蔡伟华,黄泽全,张文超,等. 5×5花瓣形燃料棒组件内过冷沸腾流动与换热特性数值研究[J]. 核动力工程,2023, 44(6): 71-79. [11] 张文超,李嘉元,杨光,等. 花瓣形棒束通道内单气泡上升行为数值模拟研究[J]. 原子能科学技术,2023, 57(10): 1899-1909. doi: 10.7538/yzk.2023.youxian.0022 [12] ZHANG C, SONG Q F, GUO H, et al. Reactivity control optimization of boron-free small modular pressurized water reactor with helical-cruciform metallic fuel[J]. Nuclear Engineering and Design, 2023, 414: 112593. doi: 10.1016/j.nucengdes.2023.112593 [13] 张涛,韩文斌,申鹏飞,等. 螺旋十字型燃料棒中子物理及热工水力性能分析[J]. 核动力工程,2023, 44(S1): 69-74. [14] 熊敏智,张大才,张夕蕊,等. 基于蒙特卡罗均匀化的异形几何燃料棒物理性能研究[J]. 现代应用物理,2023, 14(4): 040404. [15] ROMANO P K, HORELIK N E, HERMAN B R, et al. OpenMC: a state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048 [16] ROMANO P K, FORGET B. The OpenMC Monte Carlo particle transport code[J]. Annals of Nuclear Energy, 2013, 51: 274-281. doi: 10.1016/j.anucene.2012.06.040 [17] BIONDO E, DAVIDSON G, ADE B. Layered CAD/CSG geometry for spatially complex radiation transport scenarios[J]. Annals of Nuclear Energy, 2023, 181: 109569. doi: 10.1016/j.anucene.2022.109569 [18] PANDYA T M, JOHNSON S R, EVANS T M, et al. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code[J]. Journal of Computational Physics, 2016, 308: 239-272. doi: 10.1016/j.jcp.2015.12.037 [19] WEINHORST B, FISCHER U, LU L, et al. Comparative assessment of different approaches for the use of CAD geometry in Monte Carlo transport calculations[J]. Fusion Engineering and Design, 2015, 98-99: 2094-2097. doi: 10.1016/j.fusengdes.2015.06.042 [20] WILSON P P H, TAUTGES T J, KRAFTCHECK J A, et al. Acceleration techniques for the direct use of CAD-based geometry in fusion neutronics analysis[J]. Fusion Engineering and Design, 2010, 85(10-12): 1759-1765. doi: 10.1016/j.fusengdes.2010.05.030 [21] 王金成,黄杰,丁铭. 反应堆级钚驱动下钍基高温堆S&B型燃料组件特性分析[J]. 哈尔滨工程大学学报,2020, 41(5): 771-776. [22] 黄杰,丁铭. 先进柱状高温堆Th/U-MOX型组件钍含量影响分析[J]. 哈尔滨工程大学学报,2016, 37(10): 1443-1447. -