Numerical Simulation Study of Droplet Impact Process on Free Liquid Surface
-
摘要: 稳压器的雾化和喷淋对核动力设备的安全运行有着十分重要的作用。研究喷淋液滴撞击稳压器自由液面的过程可以从单个液滴撞击液面入手,揭示其基本规律和现象,从而为稳压器喷淋中液滴连续撞击液面的研究提供理论基础。对基于Fluent的DPM-to-VOF(DTV)方法进行了数值模拟和分析。通过流体体积分数方法(VOF)验证了DTV方法的准确性,系统研究了不同直径和不同初速度液滴对液坑和液柱主要尺寸的影响规律,并详细揭示了液面波动的演变过程,对液膜波动细节进行了精确捕捉。研究表明,增大液滴直径或增加液滴速度会加剧液面的干扰,导致液坑尺寸增大、液柱高度增加,可能产生一次液滴和二次液滴;同时,对不同工况下的流动分布情况进行了综合分析,发现在大韦伯数(We) 和小弗劳德数(Fr)区域,液面干扰较为显著,定量分析了HK/d0、LK/d0和HZ/d0随We和Fr的变化规律,为理解和优化稳压器喷淋过程提供了重要的理论基础。
-
关键词:
- DPM-TO-VOF(DTV) /
- 液滴撞击 /
- 液坑液柱演变 /
- 液面波动
Abstract: Atomization and spraying of pressurizer are crucial for safely operation of nuclear power equipment. Study on the process of spray droplets impacting the free surface of the pressurizer can start from the impact of single droplet on the liquid surface, revealing fundamental patterns and phenomena. This provides a theoretical foundation for study on the continuous impact of droplets on the liquid surface during pressurizer spraying. Numerical simulations and analyses were conducted using Fluent's DPM-to-VOF (DTV) method. The accuracy of the DTV method was validated using the Volume of FluiD (VOF) approach. The study systematically investigated the influence of droplet diameter and initial velocity on the main dimensions of liquid pits and columns. It comprehensively revealed evolution process of liquid surface fluctuation, accurately captured details of liquid film fluctuation. Results indicate that increasing droplet diameter or velocity intensifies surface disturbances, resulting in larger pit sizes, taller columns, and potential occurrences of primary and secondary droplets. In addition, a comprehensive analysis of flow distributions under various conditions revealed significant surface disturbances in regions of high Weber and low Froude numbers. Quantitative analyses of $ H_{\mathrm{K}}/d_0 $, $ L\mathrm{_K}/d_0 $, and $ H\mathrm{_Z}/d_0 $ variations with $ We $ and $ Fr $ provide an improtant theoretical basis for understanding and optimizing pressurizer spraying process. -
-
[1] 马慧敏,刘长根,董娇娇. 液滴冲击液面变形特征及其能量转化研究[J]. 水动力学研究与进展,2019, 34(3): 283-290. [2] 郭通,袁德奎,赵丰泽. 液滴撞击液面形成的液坑形态特征及其重力势能分析[J]. 实验流体力学,2021, 35(6): 17-27. [3] LENG L J. Splash formation by spherical drops[J]. Journal of Fluid Mechanics, 2001, 427: 73-105. doi: 10.1017/S0022112000002500 [4] GUO Y L, WEI L, LIANG G T, et al. Simulation of droplet impact on liquid film with CLSVOF[J]. International Communications in Heat and Mass Transfer, 2014, 53: 26-33. doi: 10.1016/j.icheatmasstransfer.2014.02.006 [5] 裴传康. 微小水滴撞击深水液池空腔运动及气泡夹带机理的数值模拟研究[D]. 西安: 西安理工大学,2019. [6] LAN Z K, ZHU D H, TIAN W X, et al. Numerical approaches and analysis of spray characteristics for pressuriser nozzles[J]. The Canadian Journal of Chemical Engineering, 2014, 92(5): 953-963. doi: 10.1002/cjce.21911 [7] CHEN Q S, ZHANG Q R, WANG Q L, et al. Numerical study and experimental validation: a portioned calculation method for a large atomization field[J]. Physics of Fluids, 2024, 36(7): 073341. doi: 10.1063/5.0215215 [8] LIU J, KE P. Modelling and analysis of initial icing roughness with fixed-grid enthalpy method based on DPM-VOF algorithm[J]. Chinese Journal of Aeronautics, 2022, 35(7): 168-178. doi: 10.1016/j.cja.2021.07.028 [9] 刘涵元. DPM与VOF耦合方法在固体火箭发动机沉积研究中的应用[D]. 哈尔滨: 哈尔滨工程大学,2018. [10] ADENIYI A A, MORVAN H P, SIMMONS K A. A coupled Euler-Lagrange CFD modelling of droplets-to-film[J]. The Aeronautical Journal, 2017, 121(1246): 1897-1918. doi: 10.1017/aer.2017.107 [11] LI L M, LIU Z Q, CAO M X, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model[J]. JOM, 2015, 67(7): 1459-1467. doi: 10.1007/s11837-015-1465-x [12] 邓丰,何劲松,黄燕,等. 稳压器雾化液滴动力和传热特性数值分析[J]. 核动力工程,2013, 34(S1): 136-140. [13] 赵烁,张杰,倪明玖. Marangoni流动对液滴撞击过热液池影响的数值模拟[J]. 中国科学院大学学报(中英文),2024, 41(3): 289-297. [14] 范绪君. 水滴撞击油池动力学特性研究[D]. 合肥: 合肥工业大学,2019. -