Development and Validation of the Sub-channel Code for Helical Cruciform Fuel Assembly of PWR
-
摘要: 为了开发压水堆螺旋燃料组件(HCF)的子通道程序,本研究将HCF的阻力模型和传热模型引入COBRA-TF程序,通过两组动量方程预测第一类棒间隙的双向交混和第二类棒间隙的单向交混,通过实验数据和数值模拟结果对新程序的准确性进行验证,对HCF的轴向壁面温度分布、质量通量分布等展开分析。研究结果表明,新程序可准确预测HCF的热工参数分布,并且可用于大规模燃料组件的计算和分析。本研究为HCF的优化设计和工程应用提供了可靠的分析工具。
-
关键词:
- 螺旋燃料组件(HCF) /
- 子通道程序 /
- 压水堆 /
- 热工水力模型
Abstract: In order to develop the sub-channel code for the helical cruciform fuel (HCF) assembly of PWR, the frictional model and heat transfer model of the HCF assembly is introduced into the COBRA-TF code, the two-way mixing of the first type of rod gap and the one-way mixing of the second type of rod gap is predicted by two groups of momentum equations, the accuracy of new code is validated with the experimental data and numerical simulation results, and the axial distribution of the wall temperature, the mass flux distribution et al. of the HCF assembly are analyzed. According to the study results, the distribution of the thermal-hydraulic parameters of the HCF assembly can be accurately predicted by the new code, and the new code can be used for the calculation and analysis of the large-scale fuel assembly. This study provides a reliable analysis tool for the development and application of the HCF assembly.-
Key words:
- Helical cruciform fuel assembly(HCF) /
- Sub-channel code /
- PWR /
- Thermal-hydraulic model
-
表 1 4×4HCF几何参数汇总
Table 1. Summary of Geometrical Parameters of 4×4 HCF Assembly
参数 数值 肋片直径/m 5.60×10−3 肋根直径/m 1.00×10−2 连接段长度/m 2.00×10−3 湿周/m 1.72 流道面积/m2 6.02×10−3 矩形通道边长/m 1.01×10−1 水力直径/m 1.40×10−2 螺旋节距/m 1.00 燃料棒长度/m 2.0 -
[1] MALONE J, TOTEMEIER A, SHAPIRO N, et al. Lightbridge corporation’s advanced metallic fuel for light water reactors[J]. Nuclear Technology, 2012, 180(3): 437-442. doi: 10.13182/NT12-A15354 [2] CARMACK W J, PORTER D L, CHANG Y I, et al. Metallic fuels for advanced reactors[J]. Journal of Nuclear Materials, 2009, 392(2): 139-150. doi: 10.1016/j.jnucmat.2009.03.007 [3] 张涛,韩文斌,申鹏飞,等. 螺旋十字型燃料棒中子物理及热工水力性能分析[J]. 核动力工程,2023, 44(S1): 69-74. [4] CONBOY T M, MCKRELL T J, KAZIMI M S. Experimental investigation of hydraulics and lateral mixing for helical-cruciform fuel rod assemblies[J]. Nuclear Technology, 2013, 182(3): 259-273. doi: 10.13182/NT12-58 [5] CONBOY T M. Thermal-hydraulic analysis of cross-shaped spiral fuel in high power density BWRs[D]. Cambridge: Massachusetts Institute of Technology, 2007. [6] XIAO Y, FU J S, ZHANG Q, et al. Development of a flow sweeping mixing model for helical fuel rod bundles[J]. Annals of Nuclear Energy, 2021, 160: 108428. doi: 10.1016/j.anucene.2021.108428 [7] 蔡伟华,韦徵圣,李石磊,等. 5×5花瓣形燃料棒束组件内单相流动与换热特性数值模拟研究[J]. 原子能科学技术,2021, 55(11): 1939-1949. doi: 10.7538/yzk.2021.youxian.0593 [8] 李惠悦. 冷却剂在星形螺旋燃料组件中的流动与传热特性研究[D]. 北京: 北京化工大学,2021. [9] SALKO R K, AVRAMOVA M N. CTF theory manual: CASL-U-2016-1110-000[R]. Oak Ridge: Oak Ridge National Laboratory, 2016. [10] ZHANG Q, CONG T L, XIAO Y, et al. Comparison on the thermal–hydraulic characteristics of wire-wrapped fuel and helical cruciform fuel by numerical simulation[J]. Annals of Nuclear Energy, 2022, 177: 109291. doi: 10.1016/j.anucene.2022.109291 [11] 张琦,顾汉洋,肖瑶,等. 5×5螺旋十字型棒束组件阻力与交混特性实验研究[J]. 原子能科学技术,2021, 55(6): 1060-1066. doi: 10.7538/yzk.2020.youxian.0436 [12] 丛腾龙,高勇,程毅,等. 螺旋十字燃料组件沸腾传热及燃料元件热力耦合特性研究[J]. 核动力工程,2023, 44(5): 216-222. [13] 张琦. 螺旋燃料组件流动传热特性研究与子通道程序开发[D]. 上海: 上海交通大学,2023. [14] ZHANG Q, WANG H Y, LI J L, et al. Experimental study on flow resistance and phase distribution of gas-liquid flow in helical cruciform fuel assembly[J]. Annals of Nuclear Energy, 2025, 210: 110838. doi: 10.1016/j.anucene.2024.110838 [15] ZHANG Q, WANG H Y, LI J L, et al. Numerical simulation of flow and heat transfer phenomenon of helical cruciform fuel assembly under subcooled boiling[J]. Progress in Nuclear Energy, 2024, 175: 105349. doi: 10.1016/j.pnucene.2024.105349 [16] LAHEY R T JR, MOODY F J. The thermal-hydraulics of a boiling water nuclear reactor[M]. 2nd ed. La Grange Park: American Nuclear Society, 1993: 137-138. [17] CHEN J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. [18] BUES S G. Two phase turbulent mixing model for flow in rod bundle: WAPD-T-2438[R]. Pittsburgh: Bettis Atomic Power Laboratory, 1972. [19] Churchill S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24): 91-92. [20] DITTUS F W, BOELTER L M K. Heat transfer in automobile radiators of the tubular type[J]. University of California Press, Berkeley, University of California Publications in Engineering, 1930, 2(13): 443-461. -