Research on Optimization of Aerosol Collection Technology in Laser Cutting Based on Numerical Simulation
-
摘要: 核设施退役中涉核设备的切割与解体是必不可少的关键工艺,激光切割过程中产生的放射性气溶胶将对环境造成污染。本研究基于计算流体动力学(CFD)方法,使用离散相模型(DPM)针对激光切割作业过程产生的气溶胶流动行为开展仿真模拟,探究局部通风条件下集气罩角度和抽吸流量两种因素对气溶胶收集效率的影响,为实际激光切割作业场景下的气溶胶有效控制提供理论指导。研究结果表明,减小集气罩角度能够更有效地收集激光切割产生的气溶胶,同时增加抽吸流量也能够在较大程度上改善收集效率。因此,在实际作业中要选择风量较大和集气罩布置角度较小的方案进行布置。
-
关键词:
- 激光切割 /
- 离散相模型(DPM) /
- 放射性气溶胶 /
- 收集效率;数值模拟
Abstract: In the decommissioning of nuclear facilities, the cutting and dismantling of nuclear-related equipment are indispensable key processes. However, the radioactive aerosols generated during laser cutting pose a risk of environmental contamination. This study is based on the computational fluid dynamics (CFD) method and utilizes the discrete phase model (DPM) to conduct a simulation of the flow behavior of aerosols produced during laser cutting operations. The study aims to investigate the impacts of two factors—namely, the angle of the air collection hood and the air extraction flow rate under local ventilation conditions—on aerosol collection efficiency, and to provide theoretical guidance for the effective suppression of aerosols in actual laser cutting scenarios. The results indicate that reducing the angle of the air collection hood can more efficiently capture aerosols generated by laser cutting, while increasing the suction flow rate can significantly enhance collection efficiency. Therefore, in practical operations, it is recommended to adopt configurations with a higher air volume and a smaller air collection hood angle. -
表 1 气溶胶收集计算工况表
Table 1. Calculation Conditions for Aerosol Collection
工况 集气罩角度/(°) 抽吸流量/(m3·h−1) 1 30 3800 2 30 2000 3 30 1000 4 45 3800 5 45 2000 6 45 1000 7 60 3800 8 60 2000 9 60 1000 -
[1] 张文俊,武明亮,王旭东,等. 等离子切割产生的放射性气溶胶的捕集固定试验研究[J]. 辐射防护,2014, 34(1): 21-26,32. [2] 陈超,陈再良. 激光切割烟尘及除尘系统研究[J]. 中国标准化,2019(20): 247-248. [3] 管毅,段宇建,杨凯,等. 核设施退役期间切割和拆除过程中有害物质控制研究现状[J]. 工业卫生与职业病,2024, 50(1): 78-82. [4] 姚青生,向池新,范凯. 核设施退役放射性结构解体切割气溶胶与烟尘净化装置设计[J]. 核动力工程,2017, 38(3): 176-179. [5] 黄冬徽,王志刚,李良帅,等. 基于CFD的激光安全房通风系统的优化设计[J]. 锻压装备与制造技术,2020, 55(6): 138-141. [6] HEALY D P, YOUNG J B. An experimental and theoretical study of particle deposition due to thermophoresis and turbulence in an annular flow[J]. International Journal of Multiphase Flow, 2010, 36(11-12): 870-881. doi: 10.1016/j.ijmultiphaseflow.2010.07.006 [7] 赵李盼. 室内环境中颗粒物悬浮及输运的特性研究[D]. 杭州: 浙江工业大学,2018. [8] 孟德雨. 核岛安全壳焊接气溶胶迁移机理与净化研究[D]. 衡阳: 南华大学,2022. -