Numerical Simulation Study of Ion Concentration on Fuel Cladding Surface Based on CRUD Model
-
摘要: 在压水堆(PWR)中,一回路冷却剂中锂/钾(Li/K)元素会在燃料包壳表面的沉积物(这些沉积物被称作CRUD)中浓缩,加剧包壳材料锆合金的腐蚀,对燃料寿命及安全性能造成影响,因此,对其开展相关研究具有一定的必要性和紧迫性。本研究采用有限体积法,耦合温度场、压力场以及浓度场建立了Li/K元素在CRUD结构中浓缩过程的数值计算模型(CRUD模型),该模型可根据堆芯的热工、水化学条件设计参数对不同工况下的Li/K元素浓缩情况进行模拟计算。本研究首先通过与前人的计算结果进行对比,验证所建立的CRUD模型的准确性,并基于CRUD模型分析堆芯热工设计参数(冷却剂温度、压力、热流密度等)、一回路冷却剂水化学条件(Li/K浓度)、CRUD形态参数(厚度、孔隙率等)对于Li/K离子浓度分布的影响规律,得到了可用于指导堆芯参数准则设计及燃料包壳材料选材准则设计的规律关系。Abstract: In a pressurized water reactor (PWR), the Li/K element in the primary loop coolant will be concentrated in the deposits (CRUD) on the surface of the fuel cladding, which will exacerbate the corrosion of zirconium alloy in cladding materials and have impact on the fuel life and safety performance. Therefore, it is necessary and urgent to carry out related research on the phenomenon. Finite volume method, coupled with the relationship between temperature field, pressure field and concentration field, is applied to establish the numerical calculation model of Li/K element in CRUD structure during concentration (CRUD model), which can simulate the concentration of Li/K element under different working conditions according to the design parameters of thermal and hydrochemical conditions of the reactor core. First of all, the accuracy of the CRUD model was verified by comparing with previous calculation results. Then, based on CRUD model, the influence law of core thermal design parameters (coolant temperature, pressure, heat flux, etc.), primary loop coolant water chemical conditions (Li/K concentration), and CRUD morphological parameters (thickness, porosity, etc.) on the distribution of Li/K ion concentration was analyzed, and a regular relationship which can be used to guide the design of reactor core parameter criteria and the design of fuel cladding material selection criteria was obtained.
-
表 1 研究参数及敏感性分析研究范围
Table 1. Study Parameters and Study Scope of Sensitivity Analysis
研究参数 给定取值 敏感性分析研究范围 CRUD厚度/μm 75 5~125 CRUD孔隙率/% 70 50~80 烟囱密度/109 m−2 5 1~10 烟囱直径/μm 4 1~7 CRUD平均粒径/μm 2 0.5~5 冷却剂浓度(Li)/10−4 (kg·m−3) 1.07 0.1~10 冷却剂浓度(K)/10−4 (kg·m−3) 1.08 0.1~10 传热系数/ [W·(m·K)−1] 0.8648 0.4~1.6 表 2 Li离子最大浓缩因子(热流密度q=5.321×105 W/m2)
Table 2. Li Ion Maximum Concentration Factor (Heat flux q=5.321×105 W/m2)
ε d/μm 5 30 75 100 125 0.5 1.0486 2.1746 8.3124 17.530 37.048 0.6 1.0363 1.7933 4.9131 8.6041 15.077 0.7 1.0287 1.5905 3.5420 5.5274 8.6275 0.8 1.0236 1.4662 2.8373 4.0950 5.9108 表 3 Li离子最大浓缩因子(热流密度q=8.54×105 W/m2)
Table 3. Li Ion Maximum Concentration Factor (Heat flux q=8.54×105 W/m2)
ε d/μm 5 30 75 100 125 0.5 1.1625 3.7379 32.391 109.70 395.59 0.6 1.1199 2.6945 13.615 33.647 83.999 0.7 1.0941 2.1979 7.9537 16.280 33.421 0.8 1.0770 1.9144 5.5268 9.9687 18.003 表 4 K离子最大浓缩因子(热流密度q=5.321×105 W/m2)
Table 4. K Ion Maximum Concentration Factor(Heat flux q=5.321×105 W/m2)
ε d/μm 5 30 75 100 125 0.5 1.0623 2.1746 14.862 38.544 100.74 0.6 1.0465 2.1045 7.6016 15.532 31.789 0.7 1.0367 1.8061 5.0096 8.8335 15.586 0.8 1.0302 1.6282 3.7761 6.0269 9.6221 表 5 K离子最大浓缩因子(热流密度q=8.54×105 W/m2)
Table 5. K Ion Maximum Concentration Factor(Heat flux q=8.54×105 W/m2)
ε d/μm 5 30 75 100 125 0.5 1.2115 5.3658 85.190 433.00 3229.4 0.6 1.1552 3.5356 27.943 89.535 300.50 0.7 1.1214 2.7273 14.058 35.136 88.780 0.8 1.0991 2.2872 8.8347 18.758 39.979 -
[1] COHEN P. Heat and mass transfer for boiling in porous deposits with chimneys[J]. American Institute of Chemical Engineers, 1974, 70(138): 71-80. [2] PAN C N, JONES B G, MACHIELS A J. Concentration levels of solutes in porous deposits with chimneys under wick boiling conditions[J]. Nuclear Engineering and Design, 1987, 99: 317-327. doi: 10.1016/0029-5493(87)90130-0 [3] HENSHAW J, MCGURK J C, SIMS H E, et al. A model of chemistry and thermal hydraulics in PWR fuel crud deposits[J]. Journal of Nuclear Materials, 2006, 353(1-2): 1-11. doi: 10.1016/j.jnucmat.2005.01.028 [4] SHORT M P, HUSSEY D, KENDRICK B K, et al. Multiphysics modeling of porous crud deposits in nuclear reactors[J]. Journal of Nuclear Materials, 2013, 443(1-3): 579-587. doi: 10.1016/j.jnucmat.2013.08.014 [5] HAQ I U, CINOSI N, BLUCK M, et al. Modelling heat transfer and dissolved species concentrations within PWR crud[J]. Nuclear Engineering and Design, 2011, 241(1): 155-162. doi: 10.1016/j.nucengdes.2010.10.018 [6] PARK B G, SEO S, KIM S J, et al. Meso-scale multi-physics full coupling within porous CRUD deposits on nuclear fuel[J]. Journal of Nuclear Materials, 2018, 512: 100-117. doi: 10.1016/j.jnucmat.2018.10.002 [7] 刘延,刘晓晶,何辉. 堆芯氧化腐蚀产物沉积层内两相沸腾传热传质特性[J]. 原子能科学技术,2022, 56(8): 1551-1558. doi: 10.7538/yzk.2022.youxian.0391 [8] DESHON J. Modeling PWR fuel corrosion product deposition and growth processes:1009734(2024)[R]. Palo Alto: EPRI, 2004. [9] VAFAI K. Handbook of porous media[M]. Boca Raton: Taylor & Francis, 2005: 201. [10] KUBO R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(1): 255. doi: 10.1088/0034-4885/29/1/306 [11] GIERSZEWSKI P, MIKIC B, TODREAS N. Property correlations for lithium, sodium, helium, FLiBe and water in fusion reactor applications: PFC-RR-80-12[R]. Cambridge: Massachusetts Institute of Technology, 1980. [12] HE M G, ZHANG S, ZHANG Y, et al. Development of measuring diffusion coefficients by digital holographic interferometry in transparent liquid mixtures[J]. Optics Express, 2015, 23(9): 10884-10899. doi: 10.1364/OE.23.010884 [13] FERZIGER J H, PERIĆ M, STREET R L. Computational methods for fluid dynamics[M]. Berlin: Springer, 2002: 196-200. [14] MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics[M]. Cham: Springer, 2016: 113. [15] 李盛哲. 基于子通道分析的硼输运及CRUD模型开发的数值研究[D]. 上海: 上海交通大学机械与动力工程学院,2019. [16] PAN C, JONES B G, MACHIELS A J. Wick boiling performance in porous deposits with chimneys[C]//Proceedings of the 23rd National Heat Transfer Conference. Denver: American Society of Mechanical Engineers (ASME), 1985. -