Automatic Layout and Optimization Method of Nuclear Power Plant
-
摘要: 计算机技术的飞速发展使得核动力工程智能设计成为趋势,而核电厂房智能布置设计也是重要的一部分。本文建立了用以描述设备空间需求的设备间多空间模型,并将其作为布置设计的操作基础单元,基于穴度算法与吸引子法建立了设备间定序定位方法进行设备间布置,并在定序定位后考虑通道的空间占用对设备间进行调整,实现了核电厂房自动化布置设计,随后结合混合遗传算法形成核电厂房自动化布置优化方法。最后本文以核电厂房部分设备作为研究对象,以厂房布置参数为优化变量,以厂房布置方案占地面积最小为优化目标,通过优化搜索得到的最优布置方案占地面积为1160.44 m2,有效占用面积比例达到93.70%,结果证明核电厂房自动化布置与智能优化方法可行。Abstract: With the rapid development of computer technology, the intelligent layout design of nuclear power engineering has become a trend, and the intelligent layout of nuclear power plant is also an important part. In this paper, a multi-space model of equipment room was established to describe the equipment space requirements as the basic operation unit, and an equipment room sequencing and positioning method was established based on the cavitation algorithm and attractor method for equipment room layout. And the space occupation of the passage was considered to adjust the equipment room to realize the automatic layout design method of nuclear power plant. Then, a hybrid genetic algorithm was combined to form the automatic layout optimization method for nuclear power plant. Finally, this paper takes some equipment of nuclear power plant as the research object, takes plant layout parameters as the optimization variables, and takes the floor area of plant layout scheme as the optimization objective. The optimal layout scheme obtained by optimized search covers an area of 1160.44 m2, and the effective occupied area ratio reaches 93.70%. The results prove that the automatic layout and intelligent optimization methods of nuclear power plant are feasible.
-
表 1 厂房设备间尺寸信息
Table 1. Size Information of Plant Equipment Room
设备编号 长/mm 宽/mm 设备编号 长/mm 宽/mm 13 11400 3000 404 7100 4670 14 11400 3000 405 7100 4670 43 4300 2700 406 7100 4670 44 4300 2700 407 7100 4670 45 4300 2700 408 9000 3600 46 6611 3628 409 7200 4500 400 7100 4670 410 3820 6240 401 7100 4670 411 7200 5400 402 7100 4670 412 6393 6500 403 7100 4670 413 6393 6500 表 2 优化变量信息
Table 2. Optimization Variable Information
序号 优化变量 变量下限 变量上限 最优方案 1 容器初始长度/mm 15000 50000 25559.11 2 容器初始宽度/mm 15000 50000 25177.36 3 定序长度权值 −10 10 6.43 4 定序宽度权值 −10 10 0.90 5 定序面积权值 −10 10 −2.49 6 定位贴面数权值 −10 10 0.61 7 定位他贴面数权值 −10 10 8.30 8 定位贴面率权值 −10 10 6.58 9 吸引子x吸引度权值 −10 10 2.96 10 吸引子y吸引度权值 −10 10 3.17 11 吸引子x值/mm 0 5000 2858.82 12 吸引子y值/mm 0 5000 2173.95 表 3 算法参数信息
Table 3. Algorithm Parameter Information
序号 算法参数 参数值 1 每一代个体数 10 2 迭代数 50 3 精英选择比例 0.1 4 复合形计算次数 5 -
[1] 侯庆. 核电厂反应堆厂房米层空间布局优化研究[J]. 建筑建材装饰,2018, 000(014): 165-202. [2] 吴国强. 核电站辅助厂房总体布置分析及优化[J]. 科技创新与应用,2015, 1(1): 7-8. [3] 吴祖兵,陈娟. 岭澳核电站二期工程常规岛主厂房布置设计优化[J]. 核动力工程,2009, 30(2): 59-60. [4] 金宏. 某核电厂除盐水生产厂房的优化设计[J]. 给水排水,2016, 42(S2): 39-41. [5] 贝晨,贾小攀,薛静,等. 液态燃料钍基熔盐实验堆主体装置厂房总体布置研究[J]. 核动力工程,2023, 044(2): 210-215. [6] 赵向领,左蕾,李云飞,徐吉辉. 民用航空运输载重配平问题研究综述[J]. 中国民航大学学报,2024, 42(01): 1-9. [7] 刘日鑫,秦威,许鸿伟. 复杂约束下单集装箱装载问题的改进元启发式算法[J]. 计算机科学,2023, 50(S2): 21-30. [8] FENG T, YU L F, YEUNG S K, et al. Crowd-driven mid-scale layout design[J]. ACM Transactions on Graphics, 2016, 35(4): 1-14. [9] WANG K, LIN Y A, WEISSMANN B, et al. PlanIT: planning and instantiating indoor scenes with relation graph and spatial prior networks[J]. ACM Transactions on Graphics, 2019, 38(4): 1-15. [10] 高婉君,毛超,刘贵文. 城市居住区中建筑布局自动生成方法与方案评价研究[J]. 城市住宅,2020, 27(3): 85-88. [11] 郭丰铭. 船舶典型区域布局优化及参数化系统设计[D]. 哈尔滨: 哈尔滨工程大学,2017: 25-27. [12] 王金敏. 布局问题的模拟退火算法[J]. 计算机辅助设计与图形学学报,1998, 10(3): 253-259. doi: 10.3321/j.issn:1003-9775.1998.03.010 [13] 齐继阳,竺长安. 改进型模拟退火算法在设备布局设计中的应用[J]. 计算机工程,2007, 33(1): 241-243. doi: 10.3969/j.issn.1000-3428.2007.01.084 [14] 何琨,黄文奇. 求解长方体Packing问题的捆绑穴度算法[J]. 软件学报,2011, 22(5): 843-851. [15] 王金敏,齐杨. 矩形布局问题吸引子法研究[J]. 图学学报,2012, 33(6): 38-44. doi: 10.3969/j.issn.2095-302X.2012.06.006 [16] DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. doi: 10.1007/BF01386390 [17] GOLDBERG D E. Genetic algorithm in search, optimization, and machine learning[M]. Menlo Park : Addison-Wesley Pub. Co., 1989: 1. [18] 王成. 新型优化算法开发及其在核动力装置优化中的应用[D]. 哈尔滨: 哈尔滨工程大学,2018: 27-32. -