高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于算子推断的中子输运方程的降阶模型研究

肖维 刘晓晶 张滕飞 俎建华 柴翔 何辉

肖维, 刘晓晶, 张滕飞, 俎建华, 柴翔, 何辉. 基于算子推断的中子输运方程的降阶模型研究[J]. 核动力工程, 2025, 46(2): 48-55. doi: 10.13832/j.jnpe.2024.080042
引用本文: 肖维, 刘晓晶, 张滕飞, 俎建华, 柴翔, 何辉. 基于算子推断的中子输运方程的降阶模型研究[J]. 核动力工程, 2025, 46(2): 48-55. doi: 10.13832/j.jnpe.2024.080042
Xiao Wei, Liu Xiaojing, Zhang Tengfei, Zu Jianhua, Chai Xiang, He Hui. Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference[J]. Nuclear Power Engineering, 2025, 46(2): 48-55. doi: 10.13832/j.jnpe.2024.080042
Citation: Xiao Wei, Liu Xiaojing, Zhang Tengfei, Zu Jianhua, Chai Xiang, He Hui. Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference[J]. Nuclear Power Engineering, 2025, 46(2): 48-55. doi: 10.13832/j.jnpe.2024.080042

基于算子推断的中子输运方程的降阶模型研究

doi: 10.13832/j.jnpe.2024.080042
基金项目: 国家自然科学基金项目(12175138、U20B2011);上海市青年科技启明星计划(23QA1405500);中核集团领创科研项目(CNNC-LC-2020-中核科发〔2022〕)
详细信息
    作者简介:

    肖 维(1997—),男,博士研究生,现主要从事中子输运计算方面的研究,E-mail: 851368669@sjtu.edu.cn

    通讯作者:

    张滕飞,E-mail: zhangtengfei@sjtu.edu.cn

  • 中图分类号: TL329

Reduced Order Modeling for Neutron Transport Equation Based on Operator Inference

  • 摘要: 为建立瞬态中子输运方程的快速预测模型,本文采用仿射参数化算子推断构建中子输运方程的降阶模型。算子推断通过奇异值分解与构造最优化问题,非侵入式地拟合降阶空间中的动力学方程,同时能够保留原控制方程所描述的物理规律。而仿射参数化结构有效地处理瞬态中子输运方程中常见的时变参数问题,在无需参数空间插值的情况下,实现时变堆芯参数到物理量的快速求解。研究结果表明,基于高保真数据与仿射参数化算子推断构建的降阶模型具有较好的泛化能力,能够对不同时变参数下的瞬态问题进行准确求解。因此,本文构建的降阶模型能够用于高保真中子输运方程的快速预测。

     

  • 图  1  堆芯组件与控制棒组布置示意图

    Figure  1.  Layout of Reactor Core Assemblies and Control-Rod Banks

    图  2  计算问题中的时变堆芯插入深度相对值${\mu _1}$与${\mu _2}$

    Figure  2.  Time-varying Parameters ${\mu _1}$ and ${\mu _2}$ in the Problems

    图  3  训练集快照的奇异值衰减

    Figure  3.  Decay of Singular Values of Training Set Snapshots

    图  4  训练集快照的残余能量衰减

    Figure  4.  Decay of Residual Energy of Training Set Snapshots

    图  5  训练集中降阶状态向量$ \hat{\text{φ}} $中的各阶分量$\hat{\text{φ}}[r_i] $随时间的变化

    $\hat{\text{φ}}[r_i] $—从向量${\text{φ}} $取出的第$r_i $个元素

    Figure  5.  Time-Variant Coefficients of the Reduced State Vector in the Training Set

    图  6  不同阶数与正则化系数对模型预测性能的影响

    Figure  6.  Impact of Different Orders and Regularization Coefficients on Model Prediction Performance

    图  7  堆芯总功率预测

    Figure  7.  Predictions of Total Core Power

    表  1  模型训练与在线预测的计算耗时

    Table  1.   Computational Cost for Model Training and Online Predictions

    计算时间 降阶模型r=11 全阶模型
    在线阶段:每步平均求解时间/s 3.3×10−5 0.17 core-hours
    在线阶段:每步平均重构时间/s 6.4×10−3
    离线阶段:训练时间/s 13.3
      core-hours—使用一个核心执行计算工作1个小时
    下载: 导出CSV

    表  2  预测功率分布误差

    Table  2.   Error of Power Distributions

    问题功率分布L2误差/%功率分布最大误差/%
    10.020.14
    20.653.05
    30.843.19
    下载: 导出CSV
  • [1] GONG H L, CHENG S B, CHEN Z, et al. Data-enabled physics-informed machine learning for reduced-order modeling digital twin: application to nuclear reactor physics[J]. Nuclear Science and Engineering, 2022, 196(6): 668-693. doi: 10.1080/00295639.2021.2014752
    [2] ZHANG T F, XIAO W, YIN H, et al. VITAS: A multi-purpose simulation code for the solution of neutron transport problems based on variational nodal methods[J]. Annals of Nuclear Energy, 2022, 178: 109335. doi: 10.1016/j.anucene.2022.109335
    [3] XIAO W, YIN H, LIU X J, et al. On the transient models of the VITAS code: applications to the C5G7-TD pin-resolved benchmark problem[J]. Nuclear Science and Techniques, 2023, 34(2): 20. doi: 10.1007/s41365-023-01170-x
    [4] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531. doi: 10.1137/130932715
    [5] HUHN Q A, TANO M E, RAGUSA J C, et al. Parametric dynamic mode decomposition for reduced order modeling[J]. Journal of Computational Physics, 2023, 475: 111852. doi: 10.1016/j.jcp.2022.111852
    [6] DUAN J M, HESTHAVEN J S. Non-intrusive data-driven reduced-order modeling for time-dependent parametrized problems[J]. Journal of Computational Physics, 2024, 497: 112621. doi: 10.1016/j.jcp.2023.112621
    [7] SARTORI A, BAROLI D, CAMMI A, et al. Comparison of a modal method and a proper orthogonal decomposition approach for multi-group time-dependent reactor spatial kinetics[J]. Annals of Nuclear Energy, 2014, 71: 217-229. doi: 10.1016/j.anucene.2014.03.043
    [8] DI RONCO A, INTROINI C, CERVI E, et al. Dynamic mode decomposition for the stability analysis of the molten salt fast reactor core[J]. Nuclear Engineering and Design, 2020, 362: 110529. doi: 10.1016/j.nucengdes.2020.110529
    [9] HARDY Z K, MOREL J E. Proper orthogonal decomposition mode coefficient interpolation: a non-intrusive reduced-order model for parametric reactor kinetics[J]. Nuclear Science and Engineering, 2024, 198(4): 832-852. doi: 10.1080/00295639.2023.2218581
    [10] LI W H, PENG S T, LI J G, et al. Prediction of state transitions in 3D core dynamics and xenon transients based on dynamic mode decomposition[J]. Annals of Nuclear Energy, 2024, 197: 110258. doi: 10.1016/j.anucene.2023.110258
    [11] PEHERSTORFER B, WILLCOX K. Data-driven operator inference for nonintrusive projection-based model reduction[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 306: 196-215. doi: 10.1016/j.cma.2016.03.025
    [12] BENNER P, GOYAL P, KRAMER B, et al. Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113433. doi: 10.1016/j.cma.2020.113433
    [13] MCQUARRIE S A, KHODABAKHSHI P, WILLCOX K E. Nonintrusive reduced-order models for parametric partial differential equations via data-driven operator inference[J]. SIAM Journal on Scientific Computing, 2023, 45(4): A1917-A1946. doi: 10.1137/21M1452810
    [14] 张滕飞,殷晗,孙启政,等. 通用型中子输运程序VITAS应用研究[J]. 核动力工程,2023, 44(2): 15-23.
    [15] 孙启政,刘晓晶,张滕飞. 非结构网格变分节块法在氦氙冷却小型反应堆中的应用[J]. 核动力工程,2024, 45(5): 26-31.
    [16] YIN H, LIU X J, ZHANG T F. An efficient parallel algorithm of variational nodal method for heterogeneous neutron transport problems[J]. Nuclear Science and Techniques, 2024, 35(4): 69. doi: 10.1007/s41365-024-01430-4
    [17] HSIEH A, ZHANG G C, YANG W S. Consistent transport transient solvers of the high-fidelity transport code PROTEUS-MOC[J]. Nuclear Science and Engineering, 2020, 194(7): 508-540. doi: 10.1080/00295639.2020.1746619
    [18] CHO N Z. KAIST benchmark problems in reactor and particle transport physics[EB/OL]. (2022-05-29)[2024-01-01]. https://github.com/nzcho/Nurapt-Archives/tree/master/KAIST-Benchmark-Problems.
    [19] HOU J, IVANOV K N, BOYARINOV V F, et al. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization[J]. Nuclear Engineering and Design, 2017, 317: 177-189. doi: 10.1016/j.nucengdes.2017.02.008
    [20] UY W I T, HARTMANN D, PEHERSTORFER B. Operator inference with roll outs for learning reduced models from scarce and low-quality data[J]. Computers & Mathematics with Applications, 2023, 145: 224-239.
    [21] PEHERSTORFER B. Sampling low-dimensional markovian dynamics for preasymptotically recovering reduced models from data with operator inference[J]. SIAM Journal on Scientific Computing, 2020, 42(5): A3489-A3515. doi: 10.1137/19M1292448
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  53
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-10-14
  • 网络出版日期:  2025-01-15
  • 刊出日期:  2025-04-02

目录

    /

    返回文章
    返回