Study on the Influencing Factors of Gross α and Gross β Radioactivity in Aerosols Measured by Ashing Method
-
摘要: 为增加环境气溶胶中总α、总β放射性测量的复现性和可比性,开展了基于灰化法的影响因素研究。通过实验测量,获得了样品平衡时间、灰化温度、灰化时间、测量试样质量等因素对实验结果的影响,对测量方法的探测下限、精密度和准确度进行了验证。结果表明,样品的放置时间直接影响气溶胶中总α、总β放射性测量结果,随着放置时间的延长,前3 d的总α和总β计数率测量结果迅速降低,分别经过120 h和100 h后基本恒定。灰化温度不宜超过400℃。样品体积为10000 m3的条件下,气溶胶中总α放射性活度浓度探测下限为1.6 μBq/m3,总β放射性活度浓度探测下限为0.7 μBq/m3。气溶胶中总α和总β测量方法的精密度最大值分别为16.7%和11.4%,加标回收率均大于89.0%。结果表明,灰化法可用于环境气溶胶中总α、总β放射性活度浓度的测量。Abstract: To increase the reproducibility and comparability of the gross α and gross β radioactivity measurements in environmental aerosols, this paper conducted a study on the influencing factors based on ashing method. The influence of factors such as sample equilibrium time, ashing temperature, ashing time, and sample mass on the experimental results was obtained through experimental measurements, and the detection limit, precision, and accuracy of the measurement method were verified. The results indicate that the sample placement time directly affects the measurement results of the gross α and gross β radioactivity in aerosols. With the extension of placement time, the gross α and gross β counting rate rapidly decrease in the first 3 days, and remain basically constant after 120 hours and 100 hours, respectively. The ashing temperature should not exceed 400℃. For the gross α and gross β in aerosol samples with a volume of 10000 m3, the detection lower limit of this method was 1.6 μBq/m3 for gross α radioactivity and 0.7 μBq/m3gross β radioactivity. The maximum precision values of the measurement methods for the gross α and gross β in aerosols are 16.7% and 11.4%, respectively, with spiked recovery rates greater than 89.0%. The results show that the ashing method can be used to measure the gross α and gross β radioactivity concentrations in environmental aerosols.
-
Key words:
- Ashing method, Aerosol /
- Gross α /
- Gross β /
- Activity concentration
-
表 1 总α放射性活度浓度测量准确度的测试数据
Table 1. Measurement Accuracy Data of Gross α Radioactivity Concentration
参数 试样1 试样2 试样3 样品 加标样 样品 加标样 样品 加标样 放射性活度浓度测量值/
(mBq·m−3)1 0.225 0.823 0.188 1.515 0.121 2.183 2 0.213 0.782 0.189 1.520 0.096 2.342 3 0.284 0.879 0.133 1.453 0.098 2.277 4 0.297 0.897 0.144 1.471 0.125 2.203 5 0.257 0.842 0.135 1.338 0.094 2.478 6 0.262 0.833 0.144 1.378 0.101 2.346 放射性活度浓度平均值/(mBq·m−3) 0.256 0.843 0.156 1.446 0.106 2.305 241Am加标浓度/(mBq·m−3) 0.642 1.450 2.356 加标回收率/% 91.4 89.0 93.4 表 2 总β放射性活度浓度测量准确度的测试数据
Table 2. Measurement Accuracy Data of Gross β Radioactivity Concentration
参数 试样1 试样2 试样3 样品 加标样 样品 加标样 样品 加标样 放射性活度浓度测量值/
(mBq·m−3)1 2.725 3.236 1.182 3.702 0.860 2.662 2 2.886 3.409 0.972 3.234 0.825 2.696 3 2.373 2.897 1.121 3.666 0.940 2.890 4 2.405 2.952 1.065 3.468 0.974 2.923 5 2.312 2.852 1.127 3.360 0.795 2.804 6 2.160 2.661 1.141 3.630 0.711 2.595 放射性活度浓度平均值/(mBq·m−3) 2.477 3.001 1.101 3.510 0.851 2.762 40K加标浓度/(mBq·m−3) 0.582 2.617 2.039 加标回收率/% 90.2 92.0 93.7 表 3 总α和总β放射性活度浓度测量精密度的测试数据
Table 3. Measurement Precision Data of Gross α and Gross β Radioactivity Concentration
参数 试样1 试样2 试样3 总α 总β 总α 总β 总α 总β 放射性活度浓度测量值/
(mBq·m−3)1 0.225 2.725 0.188 1.182 0.121 0.860 2 0.213 2.886 0.189 0.972 0.096 0.825 3 0.284 2.373 0.133 1.121 0.098 0.940 4 0.297 2.405 0.144 1.065 0.125 0.974 5 0.257 2.312 0.135 1.127 0.094 0.795 6 0.262 2.160 0.144 1.141 0.101 0.711 放射性活度浓度平均值/(mBq·m−3) 0.256 2.477 0.156 1.101 0.106 0.851 标准偏差 0.033 0.273 0.026 0.074 0.013 0.097 相对标准偏差/% 12.7 11.0 16.7 6.7 12.7 11.4 -
[1] 刘明海,徐志燕,安桂秀. 气溶胶中总α、总β放射性测量方法探索[J]. 核安全,2022, 21(5): 54-58. doi: 10.3969/j.issn.1672-5360.2022.5.haq202205009 [2] 吴连生,贺毅,孙雪峰,等. 硫化钴共沉淀法分析核电厂周边海水中去钾总β活度[J]. 原子能科学技术,2022, 56(1): 15-21. doi: 10.7538/yzk.2020.youxian.0520 [3] 耿霞,卢慧斌. 气溶胶中总α、总β测量方法研究及山西省气溶胶放射性水平监测分析[J]. 辐射防护,2017, 37(6): 459-464. [4] 刘鸿诗,胡晓燕,陈彬,等. 秦山核电基地外围环境放射性水平20年监测结果[J]. 原子能科学技术,2013, 47(10): 1906-1915. doi: 10.7538/yzk.2013.47.10.1906 [5] 中华人民共和国生态环境部. 辐射环境监测技术规范: HJ 61-2021[S]. 北京: 中国环境科学出版社,2021: 1-65. [6] 董传江,苟家元,金涛,等. 高通量工程试验堆周边地区辐射环境影响分析[J]. 四川环境,2017, 36(S1): 114-117. [7] 刘建芬,叶际达,曾广建,等. 秦山核电站周围沉降物中总β放射性水平分析[J]. 原子能科学技术,2000, 34(S1): 148-150,167. doi: 10.7538/yzk.2000.34.S1.0148 [8] 甄丽颖,张家俊. 阳江核电厂外围环境气溶胶总α、总β放射性水平[J]. 核技术,2017, 40(8): 41-50. [9] 陈诚,罗茂丹,王亮,等. 基于HPGe谱仪的气溶胶滤膜考核样中总α或总β放射性活度估算[J]. 核技术,2021, 44(7): 17-23. doi: 10.11889/j.0253-3219.2021.hjs.44.070202 [10] 陆智新,陈东军,林明贵,等. 泉州市电离辐射环境跟踪研究[J]. 环境监测管理与技术,2022, 34(3): 60-63. doi: 10.3969/j.issn.1006-2009.2022.03.014 [11] 吴雪梅,周更明,何宗喜,等. 南充市主城区大气气溶胶总α、总β放射性水平测量与分析[J]. 四川环境,2021, 40(4): 224-228. [12] 覃连敬,李美丽,蒋岚,等. 广州地区大气环境气溶胶样品放射性特征[J]. 核技术,2016, 39(9): 63-69. [13] 张瑞琦,汪建业,赵南京,等. 基于反渗透膜富集的水体总α/β放射性测量方法及实验[J]. 原子能科学技术,2023, 57(7): 1443-1450. doi: 10.7538/yzk.2022.youxian. -