Study on Heat Transfer and Interlayer Crust Characteristics of Two-layer Corium Pool Based on Visualization Experiments
-
摘要: 为了研究双层熔融池氧化层与金属层之间的分层界面硬壳形成特性,分析界面硬壳对熔融池流动传热的影响,设计搭建了可视化双层熔融池实验装置。50 mol%NaNO3-50 mol%KNO3混合熔盐与高温导热油分别作为氧化层与金属层的模拟物,熔融池修正瑞利数在109~1012范围内。开展了6组实验,观察到了界面硬壳的动态形成特性,获得了熔融池温度、侧壁面热流密度、硬壳厚度和传热特性关系式,分析了界面硬壳对双层熔融池传热特性的影响。结果表明,界面硬壳从侧壁面开始生长,且形成的界面硬壳将会削弱双层熔融池向上传热,并导致熔融池最高温度出现在界面硬壳下方。本研究解决了双层熔融池界面硬壳生长过程难以观察的问题,总结了界面硬壳状态变化规律,能够为严重事故安全分析提供数据支撑。Abstract: To study the formation characteristics of the interlayer crust between the oxide layer and the metal layer in the two-layer corium pool, and analyze the effect of the interlayer crust on the flow and heat transfer of the corium pool, a two-layer corium pool visualization experimental device was designed and built in this study. 50 mol%NaNO3-50 mol%KNO3 molten salt and high-temperature heat transfer oil were used as simulants of oxide layer and metal layer respectively, and the modified Rayleigh number of corium pool is 109~1012. The study includes six experiments to observe the dynamic formation characteristics of the interlayer crust. The corium pool temperature, sidewall heat flux, crust thickness and heat transfer correlations were obtained, and the impact of the interlayer crust on the heat transfer characteristics in a two-layer corium pool was analyzed. The results indicate that the interlayer crust grows from the side wall and its formation weakens the upward heat transfer in the two-layer corium pool, resulting in the highest temperature in the melt pool below the interlayer crust. This study addresses the challenge of observing the growth process of the interlayer crust in a two-layer corium pool and summarizes the variations in the state of the interlayer crust, providing data support for safety analysis of severe accidents.
-
Key words:
- Severe accident /
- Two-layer corium pool /
- Interlayer crust /
- Natural convection
-
表 1 实验模拟物物性参数
Table 1. Physical Property Parameters of Experimental Simulant
物性 50 mol% NaNO3-
50 mol% KNO3L-QC310 密度/(kg·m−3) 1964 856.3 运动粘度/(m2·s−1) 2.76×10−6 4.736×10−6 热膨胀系数/K−1 1.05×10−4 0.0008 导热系数/(W·m−1·K−1) 0.48 0.1 比热容/(J·g−1·K−1) 1.29 2.907 普朗特数(Pr) 14.5 112 表 2 实验工况表
Table 2. Test Cases
工况 上部边界 氧化层高度/mm 金属层高度/mm 功率/kW 1 辐射 310 2.10/1.40/0.70 2 390 30 2.85/1.90/0.95 3 380 40 2.85/1.90/0.95 4 310 40 2.10/1.40/0.70 5 310 60 2.10/1.40/0.70 6 300 100 2.10/1.40/0.70 表 3 实验系统测量误差
Table 3. Measurement Uncertainties of Experimental System
测量参数 Δin Δac 不确定度 IT热电偶温度/℃ 0.5 0.36 ±0.497 WT热电偶温度/℃ 0.5 0.36 ±0.497 氧化层高度/m 0.02 ±0.02 金属层高度/m 0.02 ±0.02 WT热电偶间距/m 0.002 ±0.002 平均热流密度 ±2%~5% -
[1] ASMOLOV V G, ABALIN S S, DEGAL'TSEV Y G, et al. Behavior of a core melt pool on the floor of the reactor vessel (Rasplav project)[J]. Atomic Energy, 1998, 84(4): 241-255. doi: 10.1007/BF02415231 [2] ASMOLOV V, PONOMAREV-STEPNOY N N, STRIZHOV V, et al. Challenges left in the area of in-vessel melt retention[J]. Nuclear Engineering and Design, 2001, 209(1-3): 87-96. doi: 10.1016/S0029-5493(01)00391-0 [3] KYMÄLÄINEN O, TUOMISTO H, HONGISTO O, et al. Heat flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0 [4] GUBAIDULLIN A A, SEHGAL B R. Simeco tests in a melt stratified pool[C]//Proceedings of the 10th International Conference on Nuclear Engineering. Arlington: ASME, 2002: 935-945. [5] MIASSOEDOV A, CRON T, GAUS-LIU X, et al. LIVE experiments on melt behavior in the reactor pressure vessel lower head[J]. Heat Transfer Engineering, 2013, 34(14): 1226-1236. doi: 10.1080/01457632.2013.777247 [6] ZHOU Y K, ZHANG Y P, ZHANG K, et al. Experimental study on natural convection heat transfer in a two-layer corium pool based on COPRA facility[J]. Nuclear Engineering and Design, 2019, 349: 136-143. doi: 10.1016/j.nucengdes.2019.04.031 [7] ZHANG L T, ZHANG Y P, ZHAO B, et al. COPRA: a large scale experiment on natural convection heat transfer in corium pools with internal heating[J]. Progress in Nuclear Energy, 2016, 86: 132-140. doi: 10.1016/j.pnucene.2015.10.006 [8] ZHANG L T, ZHOU Y K, LUO S M, et al. Large eddy simulation for the thermal behavior of one-layer and two-layer corium pool configurations in HPR1000 reactor[J]. Applied Thermal Engineering, 2018, 145: 38-47. doi: 10.1016/j.applthermaleng.2018.09.019 [9] ZHOU Y K, WU S H, ZHANG Y P, et al. Experimental research on heat transfer behavior of large scale two-layer salt melt pool based on COPRA facility[J]. Annals of Nuclear Energy, 2020, 138: 107166. doi: 10.1016/j.anucene.2019.107166 [10] 周瑜琨. 压水堆严重事故下双层熔融池传热特性及堆内持留能力研究[D]. 西安: 西安交通大学,2021. -