高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可视化实验的双层熔融池传热及分层界面硬壳特性研究

余剑 张亚培 苏光辉 田文喜 秋穗正

余剑, 张亚培, 苏光辉, 田文喜, 秋穗正. 基于可视化实验的双层熔融池传热及分层界面硬壳特性研究[J]. 核动力工程, 2025, 46(4): 102-108. doi: 10.13832/j.jnpe.2024.080047
引用本文: 余剑, 张亚培, 苏光辉, 田文喜, 秋穗正. 基于可视化实验的双层熔融池传热及分层界面硬壳特性研究[J]. 核动力工程, 2025, 46(4): 102-108. doi: 10.13832/j.jnpe.2024.080047
Yu Jian, Zhang Yapei, Su Guanghui, Tian Wenxi, Qiu Suizheng. Study on Heat Transfer and Interlayer Crust Characteristics of Two-layer Corium Pool Based on Visualization Experiments[J]. Nuclear Power Engineering, 2025, 46(4): 102-108. doi: 10.13832/j.jnpe.2024.080047
Citation: Yu Jian, Zhang Yapei, Su Guanghui, Tian Wenxi, Qiu Suizheng. Study on Heat Transfer and Interlayer Crust Characteristics of Two-layer Corium Pool Based on Visualization Experiments[J]. Nuclear Power Engineering, 2025, 46(4): 102-108. doi: 10.13832/j.jnpe.2024.080047

基于可视化实验的双层熔融池传热及分层界面硬壳特性研究

doi: 10.13832/j.jnpe.2024.080047
详细信息
    作者简介:

    余 剑(1997—),男,博士研究生,现主要从事核反应堆严重事故方面的研究,E-mail: yujian@stu.xjtu.edu.cn

    通讯作者:

    张亚培,E-mail: zhangyapei@mail.xjtu.edu.cn

  • 中图分类号: TL333

Study on Heat Transfer and Interlayer Crust Characteristics of Two-layer Corium Pool Based on Visualization Experiments

  • 摘要: 为了研究双层熔融池氧化层与金属层之间的分层界面硬壳形成特性,分析界面硬壳对熔融池流动传热的影响,设计搭建了可视化双层熔融池实验装置。50 mol%NaNO3-50 mol%KNO3混合熔盐与高温导热油分别作为氧化层与金属层的模拟物,熔融池修正瑞利数在109~1012范围内。开展了6组实验,观察到了界面硬壳的动态形成特性,获得了熔融池温度、侧壁面热流密度、硬壳厚度和传热特性关系式,分析了界面硬壳对双层熔融池传热特性的影响。结果表明,界面硬壳从侧壁面开始生长,且形成的界面硬壳将会削弱双层熔融池向上传热,并导致熔融池最高温度出现在界面硬壳下方。本研究解决了双层熔融池界面硬壳生长过程难以观察的问题,总结了界面硬壳状态变化规律,能够为严重事故安全分析提供数据支撑。

     

  • 图  1  实验段电加热棒和热电偶布置示意图  mm

    IT—测量熔融池内部温度的热电偶;WT—测量圆弧壁面内外温度的热电偶;CT—测量硬壳温度的多点式热电偶;Φ—试验段直径。

    Figure  1.  Layout Diagram of Heating Rod and Thermocouple in Experimental Section

    图  2  可视化双层熔融池实验回路

    蓝线—冷却回路;黄线—气体回路。

    Figure  2.  Visualized Two-layer Corium Pool Experimental Loop  

    图  3  熔融池稳态温度分布(工况2)

    黑色虚线为分层界面位置,红色虚线为金属层顶部位置,下同。

    Figure  3.  Temperature Distribution of Corium Pool in Steady State (Case 2)

    图  4  稳态熔融池无量纲温度分布

    Figure  4.  Dimensionless Temperature Distribution of Corium Pool in Steady State

    图  5  壁面热流密度稳态分布(工况2)

    Figure  5.  Heat Flux Distribution on Wall Surface in Steady State (Case 2)

    图  6  壁面热流密度稳态分布(工况6)

    Figure  6.  Heat Flux Distribution on Wall Surface in Steady State (Case 6)

    图  7  无量纲热流密度分布

    Figure  7.  Dimensionless Heat Flux Distribution in Steady State

    图  8  工况5-2.1 kW硬壳状态侧视图

    Figure  8.  Side View of Crust State at Case 5-2.1 kW

    图  9  工况5-2.1 kW硬壳状态正视图

    Figure  9.  Front View of Crust State at Case 5-2.1 kW

    图  10  壁面硬壳厚度稳态分布(工况5)

    Figure  10.  Crust Thickness Distribution on Wall Surface in Steady State (Case 5)

    图  11  分层界面硬壳状态与氧化层高度比例、熔融池功率密度的关系

    Figure  11.  Relationship between Inter-layer Crust State and Oxide Height Proportion, Corium Pool Power Density

    图  12  COPRA-II双层熔融池实验与可视化双层熔融池实验Nuup/Nudn对比

    Figure  12.  Nuup/Nudn Comparison between COPRA-II Two-layer Corium Pool Test and Visualized Two-layer Corium Pool Test

    表  1  实验模拟物物性参数

    Table  1.   Physical Property Parameters of Experimental Simulant

    物性50 mol% NaNO3-
    50 mol% KNO3
    L-QC310
    密度/(kg·m−3)1964856.3
    运动粘度/(m2·s−1)2.76×10−64.736×10−6
    热膨胀系数/K−11.05×10−40.0008
    导热系数/(W·m−1·K−1)0.480.1
    比热容/(J·g−1·K−1)1.292.907
    普朗特数(Pr14.5112
    下载: 导出CSV

    表  2  实验工况表

    Table  2.   Test Cases

    工况上部边界氧化层高度/mm金属层高度/mm功率/kW
    1辐射3102.10/1.40/0.70
    2390302.85/1.90/0.95
    3380402.85/1.90/0.95
    4310402.10/1.40/0.70
    5310602.10/1.40/0.70
    63001002.10/1.40/0.70
    下载: 导出CSV

    表  3  实验系统测量误差

    Table  3.   Measurement Uncertainties of Experimental System

    测量参数 Δin Δac 不确定度
    IT热电偶温度/℃ 0.5 0.36 ±0.497
    WT热电偶温度/℃ 0.5 0.36 ±0.497
    氧化层高度/m 0.02 ±0.02
    金属层高度/m 0.02 ±0.02
    WT热电偶间距/m 0.002 ±0.002
    平均热流密度 ±2%~5%
    下载: 导出CSV
  • [1] ASMOLOV V G, ABALIN S S, DEGAL'TSEV Y G, et al. Behavior of a core melt pool on the floor of the reactor vessel (Rasplav project)[J]. Atomic Energy, 1998, 84(4): 241-255. doi: 10.1007/BF02415231
    [2] ASMOLOV V, PONOMAREV-STEPNOY N N, STRIZHOV V, et al. Challenges left in the area of in-vessel melt retention[J]. Nuclear Engineering and Design, 2001, 209(1-3): 87-96. doi: 10.1016/S0029-5493(01)00391-0
    [3] KYMÄLÄINEN O, TUOMISTO H, HONGISTO O, et al. Heat flux distribution from a volumetrically heated pool with high Rayleigh number[J]. Nuclear Engineering and Design, 1994, 149(1-3): 401-408. doi: 10.1016/0029-5493(94)90305-0
    [4] GUBAIDULLIN A A, SEHGAL B R. Simeco tests in a melt stratified pool[C]//Proceedings of the 10th International Conference on Nuclear Engineering. Arlington: ASME, 2002: 935-945.
    [5] MIASSOEDOV A, CRON T, GAUS-LIU X, et al. LIVE experiments on melt behavior in the reactor pressure vessel lower head[J]. Heat Transfer Engineering, 2013, 34(14): 1226-1236. doi: 10.1080/01457632.2013.777247
    [6] ZHOU Y K, ZHANG Y P, ZHANG K, et al. Experimental study on natural convection heat transfer in a two-layer corium pool based on COPRA facility[J]. Nuclear Engineering and Design, 2019, 349: 136-143. doi: 10.1016/j.nucengdes.2019.04.031
    [7] ZHANG L T, ZHANG Y P, ZHAO B, et al. COPRA: a large scale experiment on natural convection heat transfer in corium pools with internal heating[J]. Progress in Nuclear Energy, 2016, 86: 132-140. doi: 10.1016/j.pnucene.2015.10.006
    [8] ZHANG L T, ZHOU Y K, LUO S M, et al. Large eddy simulation for the thermal behavior of one-layer and two-layer corium pool configurations in HPR1000 reactor[J]. Applied Thermal Engineering, 2018, 145: 38-47. doi: 10.1016/j.applthermaleng.2018.09.019
    [9] ZHOU Y K, WU S H, ZHANG Y P, et al. Experimental research on heat transfer behavior of large scale two-layer salt melt pool based on COPRA facility[J]. Annals of Nuclear Energy, 2020, 138: 107166. doi: 10.1016/j.anucene.2019.107166
    [10] 周瑜琨. 压水堆严重事故下双层熔融池传热特性及堆内持留能力研究[D]. 西安: 西安交通大学,2021.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  10
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-10-12
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回