高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔覆制备钴基和镍基涂层的组织与性能对比研究

吴伟建 冯悦峤 李维

吴伟建, 冯悦峤, 李维. 激光熔覆制备钴基和镍基涂层的组织与性能对比研究[J]. 核动力工程, 2025, 46(4): 273-281. doi: 10.13832/j.jnpe.2024.080050
引用本文: 吴伟建, 冯悦峤, 李维. 激光熔覆制备钴基和镍基涂层的组织与性能对比研究[J]. 核动力工程, 2025, 46(4): 273-281. doi: 10.13832/j.jnpe.2024.080050
Wu Weijian, Feng Yueqiao, Li Wei. Comparative Study on the Microstructure and Properties of Co-based and Ni-based Coatings Prepared by Laser Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 273-281. doi: 10.13832/j.jnpe.2024.080050
Citation: Wu Weijian, Feng Yueqiao, Li Wei. Comparative Study on the Microstructure and Properties of Co-based and Ni-based Coatings Prepared by Laser Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 273-281. doi: 10.13832/j.jnpe.2024.080050

激光熔覆制备钴基和镍基涂层的组织与性能对比研究

doi: 10.13832/j.jnpe.2024.080050
详细信息
    作者简介:

    吴伟建(1987—),男,高级工程师,现主要从事核电设备制造工艺等方面的研究,E-mail: wuwj5@shanghai-electric.com

  • 中图分类号: TL341;TG441

Comparative Study on the Microstructure and Properties of Co-based and Ni-based Coatings Prepared by Laser Cladding

  • 摘要: 为了验证采用无钴镍基涂层替代钴基涂层的可行性,采用激光熔覆工艺分别制备了Ni55镍基涂层和Stellite 6钴基涂层。通过组织观察、硬度分析、摩擦磨损测试和电化学腐蚀测试,对比研究了两种涂层在组织结构及磨损性能和腐蚀性能方面的优劣。结果表明,Ni55镍基涂层的稀释率略大,组织大部分为等轴晶,而Stellite 6钴基涂层则为平行热流方向生长的树枝晶。Ni55镍基涂层的平均硬度为527 HV,大于Stellite 6钴基涂层的448 HV。摩擦磨损实验结果显示,室温下Ni55镍基涂层的摩擦系数和磨损失重均小于Stellite 6钴基涂层;300℃下Ni55镍基涂层虽然摩擦系数略大于Stellite 6钴基涂层,但磨损失重和磨损体积均小于Stellite 6钴基涂层。电化学腐蚀实验结果显示,Ni55镍基涂层的耐腐蚀性能更优。因此,镍基系列涂层有望替代Stellite 6钴基涂层用于核反应堆设备钩爪等耐磨零件。

     

  • 图  1  Stellite 6钴基和Ni55镍基粉末的形貌

    Figure  1.  Morphology of Stellite 6 Co-based and Ni55 Ni-based Powders

    图  2  涂层的宏观形貌

    Figure  2.  Macroscopic Morphology of the Coating

    图  3  涂层中部及界面处的金相组织

    Figure  3.  Metallographic Structure of the Coating at the Center and Interface

    图  4  Stellite 6钴基涂层的SEM图及EDS面扫图

    Figure  4.  SEM Image and EDS Mapping of the Stellite 6 Co-based Coating

    图  5  Ni55镍基涂层的SEM图及EDS面扫图

    Figure  5.  SEM Image and EDS Mapping of the Ni55 Ni-based Coating

    图  6  涂层的硬度分布

    Figure  6.  Hardness Distribution of Coatings

    图  7  常温下涂层和母材的摩擦系数

    Figure  7.  Friction Coefficient of Coatings and Substrate under Low Temperature

    图  8  涂层和母材的磨损形貌

    Figure  8.  Wear Morphology of Coatings and Substrate

    图  9  涂层的摩擦系数

    Figure  9.  Friction Coefficient of Coatings

    图  10  涂层的OCP及动电位极化测试曲线

    Figure  10.  OCP and Potentiodynamic Polarization Test Curves of Coatings

    图  11  涂层的EIS图

    Rs—电解液面电阻;Rf—钝化膜面电阻;Rct—电荷转移面电阻; Qdl—双电层非理想电容密度;Qf—钝化膜非理想电容密度。

    Figure  11.  EIS of Coatings

    图  12  涂层界面区域的元素线扫描结果

    Figure  12.  Element Line Scanning in the Coating Interface Region

    图  13  界面区域的显微硬度分布

    Figure  13.  Microhardness Distribution within the Interface Region

    表  1  Stellite 6钴基粉末和涂层的成分(%,质量百分数)

    Table  1.   Composition of Stellite 6 Co-based Powder and Coating

    样品形态 C Cr W Ni Mo Mn Si Fe Co
    粉末 0.977 28.11 4.99 1.83 0.28 0.22 0.77 2.46 余量
    涂层 0.899 29.12 5.11 2.01 0.25 0.33 0.91 2.62 余量
    下载: 导出CSV

    表  2  Ni55镍基粉末和涂层的成分(%,质量百分数)

    Table  2.   Composition of Ni55 Ni-based Powder and Coating

    样品形态 C B Si Cr Fe Ni
    粉末 0.477 1.61 3.53 14.31 2.49 余量
    涂层 0.429 2.84 3.63 15.52 2.65 余量
    下载: 导出CSV

    表  3  激光熔覆实验工艺参数

    Table  3.   Laser Cladding Process Parameters

    工艺参数 参数值
    激光功率/W 1500
    光斑直径/mm 5.0
    扫描速度/(mm·s−1) 4
    保护气体流量/(L·min−1) 10
    送粉速率/(g·min−1) 16
    搭接率/% 50
    下载: 导出CSV

    表  4  图5中各点的EDS点扫结果(%,质量百分数)

    Table  4.   EDS Point Scan Results in Fig. 5

    位置 B C Si Cr Fe Ni
    P1 4.48 8.77 0.26 56.85 16.11 13.54
    P2 7.40 6.09 2.32 3.90 13.35 66.93
    P3 1.11 3.98 3.10 7.86 21.00 65.95
    下载: 导出CSV

    表  5  稳态OCP及从极化曲线中拟合出的电化学参数

    Table  5.   Steady-state OCP and Electrochemical Parameters Fitted from Potentiodynamic Polarization Curves

    材料 OCP /V 腐蚀
    电位/V
    腐蚀电流
    密度/(nA·cm−2)
    点蚀
    电位/V
    Stellite 6钴基 −0.235 −0.233 68.8 0.724
    Ni55镍基 −0.201 −0.171 64.3 0.812
    下载: 导出CSV

    表  6  EIS的拟合参数

    Table  6.   Fitting Parameters of EIS

    材料 Rs/
    (Ω·cm2)
    Qdl/
    (μF·cm−2)
    ndl Rct/
    (Ω·cm2)
    Qf/
    (μF·cm−2)
    nf Rf/
    (Ω·cm2)
    Stellite 6
    钴基
    12.8 9.40 0.88 1.61×105 13.5 0.92 2.51×105
    Ni55
    镍基
    19.6 3.21 0.76 2.66×105 9.82 0.91 2.17×105
      ndl—双电层非理想电容弥散指数;nf—钝化膜非理想电容弥散指数。
    下载: 导出CSV
  • [1] 刘彬,王银宏,王臣,等. 中国钴资源产业形势与对策建议[J]. 资源与产业,2014, 16(3): 113-119.
    [2] OCKEN H. Reducing the cobalt inventory in light water reactors[J]. Nuclear Technology, 1985, 68(1): 18-28. doi: 10.13182/NT85-A33563
    [3] XU G J, KUTSUNA M, LIU Z J, et al. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes[J]. Materials Science and Engineering: A, 2006, 417(1-2): 63-72. doi: 10.1016/j.msea.2005.08.192
    [4] LIU X B, FU G Y, LIU S, et al. High temperature wear and corrosion resistance of Co-free Ni-based alloy coatings on nuclear valve sealing surfaces[J]. Nuclear Engineering and Design, 2011, 241(12): 4924-4928. doi: 10.1016/j.nucengdes.2011.09.021
    [5] WU W H, ZHANG C, WANG R D, et al. A high temperature wear-resistant Ni-based alloy coating for coppery blast furnace tuyere application[J]. Surface and Coatings Technology, 2023, 464: 129550. doi: 10.1016/j.surfcoat.2023.129550
    [6] BEHERA A, SAHOO A K. Wear behaviour of Ni based superalloy: a review[J]. Materials Today: Proceedings, 2020, 33: 5638-5642. doi: 10.1016/j.matpr.2020.04.007
    [7] DEODESHMUKH V, GLEESON B. Evaluation of the hot corrosion resistance of commercial β-NiAl and developmental γ′-Ni3Al+ γ-Ni-based coatings[J]. Surface and Coatings Technology, 2007, 202(4-7): 643-647. doi: 10.1016/j.surfcoat.2007.06.018
    [8] HU Y J, WANG Z X, PANG M. Effect of WC content on laser cladding Ni-based coating on the surface of stainless steel[J]. Materials Today Communications, 2022, 31: 103357. doi: 10.1016/j.mtcomm.2022.103357
    [9] CHEN C, MEIPING W, RUI H, et al. Understanding Stellite-6 coating prepared by laser cladding: convection and columnar-to-equiaxed transition[J]. Optics & Laser Technology, 2022, 149: 107885.
    [10] ZHAO Y, FENG K, YAO C W, et al. Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants[J]. Surface and Coatings Technology, 2019, 359: 485-494. doi: 10.1016/j.surfcoat.2018.12.017
  • 加载中
图(13) / 表(6)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 修回日期:  2024-11-22
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回