Study on Diffusion Source Cascade Variance Reduction Method for Monte Carlo Deep-penetration Shielding Calculation
-
摘要: 提出了一种用于蒙特卡罗屏蔽深穿透计算的弥散源级联降方差方法。该方法的核心思想是通过多层局部相空间的响应关系级联获取全局的降方差参数分布。该方法首先通过弥散源计算相邻相空间之间的与空间和能量相关的通量响应因子,随后从源空间向外逐层正向级联获得全局预估通量分布,再从计数空间反向级联获取重要性分布,最终生成一致性的源偏倚参数和权窗参数。该方法通过局部蒙特卡罗前置计算获取降方差参数,因此无需迭代,可有效降低迭代时间成本,提高计算效率。将该方法应用于单探测器问题和多探测器问题,与蒙特卡罗直接计算的计算值符合良好,品质因子相比直接计算提升了约2~4个数量级。同时,将结果与典型降方差方法(MAGIC方法和CADIS方法)的计算效果进行对比,数值结果表明,弥散源级联方法的整体降方差效果更优,可满足屏蔽深穿透问题的需求。Abstract: This paper proposed the diffusion source cascade variance reduction method for Monte Carlo deep-penetration shielding calculation. The core idea of this method is to obtain the global variance-reducing parameter distribution through the cascade of response relations in multi-layer local phase space. The method first calculates the flux response factors related to space and energy between adjacent phase spaces by the dispersion source. Secondly, it cascades outward from the source space to obtain the global estimated flux distribution. Thirdly, it cascades backward from the count space to obtain the importance distribution. Finally it generates the consistent source bias parameters and weight window parameters. This method obtains the variance-reducing parameters through local Monte Carlo pre-calculation, so there is no need for iteration, which can effectively reduce the iteration time cost and improve the calculation efficiency. This method is applied to the single detector problem and the multi-detector problem. The calculated values are in good compliance with the Monte Carlo direct calculation, and the quality factor is improved by about 2~4 orders of magnitude. At the same time, the results are compared with those of the typical variance-reducing methods MAGIC and CADIS. The numerical results show that the overall variance-reducing effect of the diffusion source cascade method is better, and it can meet the requirements of the deep-penetration shielding calculation.
-
表 1 弥散源级联降方差方法各步骤计算时间
Table 1. CalculationTime for Each Step of Diffusion Source Cascade Method
前置弥散
源计算时间/min级联计算
过程时间/min最终正式
计算时间/min总时间/min 3.86×10−1 16.20 2.03×102 2.20×102 表 2 不同计算方法得到FOM对比
Table 2. Comparison of FOM Obtained by Different Calculation Method
计算方法 直接计算 Booth方法 弥散源级联方法 FOM 1.93×10−1 1.18 20.70 表 3 不同方法计算HBR-2基准题的计算时间
Table 3. Time of Different Methods in Calculating HBR-2 Benchmarking Problem
计算方法 权窗获取
计算时间/min最终正式
计算时间/min总时间/min 直接计算 0 3.31×105 3.31×105 MAGIC方法 1.12×103 4.03×104 4.14×104 弥散源级联降方差方法 6.11×102 1.05×103 1.66×103 表 4 HBR-2屏蔽问题计算中辐照监督管的归一化剂量(rem)和相对标准偏差
Table 4. Normalized Dose (rem) and Relative Standard Deviation of Surveillance Capsule in HBR-2 Shielding Problem
计算方法 参数 237Np(n,f)137Cs 238U(n,f)137Cs 58Ni(n,p)58Co 54Fe(n,p)54Mn 46Ti(n,p)46Sc 63Cu(n,α)60Co 直接计算 归一化剂量 2.73×10−33 3.61×10−34 1.06×10−34 7.80×10−35 1.03×10−35 5.13×10−37 相对标准偏差 5.80×10−3 8.90×10−3 1.22×10−2 1.32×10−2 2.18×10−2 3.13×10−2 MAGIC方法 归一化剂量 2.72×10−3 3.55×10−34 1.03×10−34 7.52×10−35 9.89×10−36 5.66×10−37 相对标准偏差 1.08×10−2 1.28×10−2 1.60×10−2 1.72×10−2 2.36×10−2 3.10×10−2 弥散源级联降方差方法 归一化剂量 2.76×10−33 3.64×10−34 1.06×10−34 7.75×10−35 1.03×10−35 5.97×10−37 相对标准偏差 9.00×10−4 1.00×10−3 1.20×10−3 1.30×10−3 2.10×10−3 3.00×10−3 表 5 HBR-2屏蔽问题计算中堆外活化探测片的归一化剂量(rem)和相对标准偏差
Table 5. Normalized Dose (rem) and Relative Standard Deviation of Ex-core Detector in HBR-2 Shielding Problem
计算方法 参数 237Np(n,f)137Cs 238U(n,f)137Cs 58Ni(n,p)58Co 54Fe(n,p)54Mn 46Ti(n,p)46Sc 63Cu(n,α)60Co 直接计算 归一化剂量 1.08×10−34 5.75×10−36 1.10×10−36 7.16×10−37 4.37×10−38 2.21×10−39 相对标准偏差 4.69×10−2 1.31×10−1 1.89×10−1 2.24×10−1 4.39×10−1 7.95×10−1 MAGIC方法 归一化剂量 9.87×10−35 4.22×10−36 8.98×10−37 5.91×10−37 7.52×10−38 4.45×10−39 相对标准偏差 2.47×10−2 2.79×10−2 2.78×10−2 3.21×10−2 5.01×10−2 7.28×10−2 弥散源级联降方差方法 归一化剂量 9.50×10−35 3.98×10−36 8.55×10−37 5.65×10−37 7.54×10−38 4.86×10−39 相对标准偏差 2.46×10−2 1.88×10−2 1.32×10−2 1.37×10−2 1.53×10−2 1.78×10−2 表 6 HBR-2屏蔽问题计算中辐照监督管的FOM对比
Table 6. FOM Comparasion of Surveillance Capsule in HBR-2 Shielding Problem
计算方法 237Np(n,f)137Cs 238U(n,f)137Cs 58Ni(n,p)58Co 54Fe(n,p)54Mn 46Ti(n,p)46Sc 63Cu(n,α)60Co 直接计算 9.00×10−2 3.80×10−2 2.00×10−2 1.70×10−2 6.40×10−3 3.10×10−3 MAGIC方法 2.07×10−1 1.47×10−1 9.43×10−2 8.16×10−2 4.33×10−2 2.51×10−2 CADIS方法 188.00 60.00 37.00 32.80 10.60 4.75 弥散源级联降方差方法 7.43×102 6.02×102 4.18×102 3.56×102 1.36×102 66.9 表 7 HBR-2屏蔽问题计算中堆外活化探测片的FOM对比
Table 7. FOM Comparasion of Ex-core Detector in HBR-2 Shielding Problem
计算方法 237Np(n,f)137Cs 238U(n,f)137Cs 58Ni(n,p)58Co 54Fe(n,p)54Mn 46Ti(n,p)46Sc 63Cu(n,α)60Co 直接计算 1.40×10−3 1.70×10−4 8.50×10−5 6.00×10−5 1.60×10−5 4.80×10−6 MAGIC方法 3.96×10−2 3.10×10−2 3.12×10−2 2.34×10−2 9.62×10−3 4.56×10−3 CADIS方法 19.10 1.17 6.14×10−1 4.89×10−1 4.47×10−2 4.34×10−3 弥散源级联降方差方法 9.94×10−1 1.70 3.45 3.21 2.57 1.90 -
[1] 邱有恒,邓力,李百文,等. 几种重要性函数在粒子输运蒙特卡罗模拟中的应用[J]. 原子能科学技术,2013, 47(S2): 673-677. [2] 聂星辰,李佳,赵平辉,等. 深穿透屏蔽计算中MCNP减方差技巧应用及比较[J]. 核电子学与探测技术,2016, 36(7): 729-733,741. doi: 10.3969/j.issn.0258-0934.2016.07.016 [3] COOPER M A, LARSEN E W. Automated weight windows for global Monte Carlo particle transport calculations[J]. Nuclear Science and Engineering, 2001, 137(1): 1-13. doi: 10.13182/NSE00-34 [4] BECKER T L. Hybrid Monte Carlo/deterministic methods for radiation shielding problems[D]. Michigan: University of Michigan, 2009. [5] BECKER T L, LARSEN E W. The application of weight windows to "Global" Monte Carlo problems[C]//International Conference on Mathematics, Computational Methods & Reactor Physics. New York: Saratoga Springs, 2009. [6] WAGNER J C. Acceleration of Monte Carlo shielding calculations with an automated variance reduction technique and parallel processing[D]. Pennsylvania: Pennsylvania State University, 1997. [7] WAGNER J C, HAGHIGHAT A. Automatic variance reduction for Monte Carlo shielding calculations with the discrete ordinates adjoint function[C]//Proceedings of the Joint Int Conf on Mathematical Methods and Supercomputing for Nuclear Applications. New York: Saratoga Springs, 1997. [8] WAGNER J C, HAGHIGHAT A. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function[J]. Nuclear Science and Engineering, 1998, 128(2): 186-208. doi: 10.13182/NSE98-2 [9] WAGNER J C. An automated deterministic variance reduction generator for Monte Carlo shielding applications[C]//Proceedings of the American Nuclear Society /Radiation Protection & Shielding Division 12th Biennial RPSD Topical Meeting. New Mexico: Nuclear Science and Technology Division, 2002. [10] WAGNER J C, BLAKEMAN E D, PEPLOW D E. Forward-weighted CADIS method for variance reduction of Monte Carlo calculations of distributions and multiple localized quantities[C]//Proceedings of the International Conference on Mathematics, Computational Methods & Reactor Physics. New York: Saratoga Springs, 2009. [11] BOOTH T E. Automatic importance estimation in forward Monte Carlo calculations[J]. Transactions of the American Nuclear Society, 1982, 41: 308-309. [12] BOOTH T E. Weight window/importance generator for Monte Carlo streaming problems: LA-UR-83-1138[R]. New Mexico: Los Alamos National Laboratory, 1983. [13] VAN WIJK A, VAN DEN EYNDE G, HOOGENBOOM J E. An easy to implement global variance reduction procedure for MCNP[J]. Annals of Nuclear Energy, 2011, 38(11): 2496-2503. doi: 10.1016/j.anucene.2011.07.037 [14] DAVIS A, TURNER A. Comparison of global variance reduction techniques for Monte Carlo radiation transport simulations of ITER[J]. Fusion Engineering and Design, 2011, 86(9-11): 2698-2700. doi: 10.1016/j.fusengdes.2011.01.059 [15] LEPPÄNEN J. Response matrix method–based importance solver and variance reduction scheme in the serpent 2 Monte Carlo code[J]. Nuclear Technology, 2019, 205(11): 1416-1432. doi: 10.1080/00295450.2019.1603710 [16] 郑俞. 蒙特卡罗减方差加速方法研究与应用[D]. 合肥: 中国科学技术大学,2021. [17] REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark: NUREG/CR--6453[R]. Washington: Nuclear Regulatory Commission, 1998. [18] 郑琪,沈炜,贺清明,等. 基于NECP-MCX的蒙特卡罗-确定论耦合及权窗网格粗化方法研究[J]. 核动力工程,2021, 42(2): 202-207. -