高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ADS包壳氧化及溶解/沉积性能数值研究

李小波 何源 牛风雷

李小波, 何源, 牛风雷. ADS包壳氧化及溶解/沉积性能数值研究[J]. 核动力工程, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054
引用本文: 李小波, 何源, 牛风雷. ADS包壳氧化及溶解/沉积性能数值研究[J]. 核动力工程, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054
Li Xiaobo, He Yuan, Niu Fenglei. Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054
Citation: Li Xiaobo, He Yuan, Niu Fenglei. Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding[J]. Nuclear Power Engineering, 2025, 46(4): 144-151. doi: 10.13832/j.jnpe.2024.080054

ADS包壳氧化及溶解/沉积性能数值研究

doi: 10.13832/j.jnpe.2024.080054
基金项目: 中国加速器驱动嬗变研究装置项目(2017-000052s-75-01-000590);国家自然科学基金(12027813);甘肃省地方项目(E439811SBH)
详细信息
    作者简介:

    李小波(1991—),男,博士,现主要从事铅基堆技术研发工作,E-mail: lixiaobo@impcas.ac.cn

    通讯作者:

    何 源,E-mail: hey@impcas.ac.cn

  • 中图分类号: TL334

Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding

  • 摘要: 为开展铅铋合金冷却加速器驱动次临界系统(ADS)堆芯燃料包壳氧化层的生长特性研究,进一步分析存在氧化层的燃料包壳传热,本文建立了ADS包壳氧化层生长和溶解/沉积模型,进一步耦合计算流体动力学(CFD)方法,研究并实现了存在溶解/沉积的包壳氧化层生长和燃料棒温度仿真。对自主设计的多束ADS燃料棒传热和包壳表层氧化、溶解/沉积的研究表明:在高氧浓度下,本文模型与实验吻合度高;最大氧化层厚度、溶解厚度出现在堆芯活性段的高温区,最大沉积厚度出现在低温区的入口端;运行10000 h氧化层总厚度约65 μm,由氧化层引起包壳内外温差增长的最大值为12.20 K。因此,本研究提出的流动液态铅铋环境ADS燃料包壳氧化层生长模型及其数值计算方法可以计算燃料包壳存在氧化层情形的燃料棒温度。

     

  • 图  1  计算流程

    Figure  1.  Calculation Flowchart

    图  2  不同时刻氧化层厚度的实验值[8]与模拟值对比(负数表示向内生长)

    Figure  2.  Comparison between Simulated Values of Oxide Scale Thickness and Experimental Values at Different Time (Negative Values Represent Inward Growth)

    图  3  燃料棒线功率分布

    Figure  3.  Linear Power Distribution in Fuel Rods

    图  4  网格敏感性分析

    Figure  4.  Mesh Sensitivity Analysis

    图  5  初始时刻不同高度处流体温度分布云图

    Figure  5.  Fluid Temperature Distribution Cloud at Different Heights at the Initial Time

    图  6  不同时刻氧浓度分布云图

    Figure  6.  Oxygen Concentration Distribution Cloud at Different Time

    图  7  3号燃料棒包壳氧化层分布与生长

    Figure  7.  Distribution and Growth of Oxide Scale in No. 3 Fuel Rod Cladding

    图  8  10000 h时Fe-Cr尖晶石/Fe3O4层厚度和溶解/沉积云图

    Figure  8.  Thickness and Dissolution/Precipitation Cloud of Fe-Cr Spinel/Fe3O4 at 10000 h

    图  9  不同时刻的最高温度和最大温差分布

    Figure  9.  Distribution of Peak Temperature and Maximum Temperature Difference at Different Time

    表  1  元素在LBE内的溶解度[10]

    Table  1.   Solubility of Some Elements in LBE

    元素 a b 温度区间/K
    Fe 3.14 14190 399~1173
    O 1.20 3400 573~1013
      ab—溶解度公式Cs=10ab/T中的拟合常系数。
    下载: 导出CSV

    表  2  消耗1 mol氧对应的吉布斯自由能(400~1000 K)

    Table  2.   Gibbs Free Energy by Consuming 1 mol O2 (400~1000 K)

    反应类型 相应的吉布斯自由能/(J·mol−1)
    2Pb+O2=2PbO −437610+199.1·T
    $\dfrac{3}{2} $Fe+O2=$\dfrac{1}{2} $Fe3O4 −551990+156.9·T
    下载: 导出CSV

    表  3  相关的参数计算式

    Table  3.   Expression for Related Parameters

    参数 表达式
    ${D_{\text{I}}}$ $ D_{\text{I}}=1.22 \times 10^4\exp\left(\dfrac{-27700}{T}\right) \cdot \left[1+1.56 \times 10^6\exp\left(\dfrac{-20100}{T}\right)\right]^{-1} $
    ${D_{\text{v}}}$ ${D_{\text{v}}} = 0.177\eta \exp \left( {\dfrac{{ - 14600}}{T}} \right) + 1.16 \times {10^{ - 3}}\left( {1 - \eta } \right)\exp \left( {\dfrac{{ - 8670}}{T}} \right)$
    ${K_{\text{I}}}$ ${K_{\text{I}}} = 1.93 \times {10^3}\exp \left( {\dfrac{{ - 43140}}{T}} \right) + 3.01 \times {10^9}\exp \left( {\dfrac{{ - 63270}}{T}} \right)$
    ${K_{\text{v}}}$ ${K_{\text{v}}} = 2.04 \times {10^{ - 7}}\exp \left( {\dfrac{{27170}}{T}} \right)$
    $a_{{{\text{O}}_{\text{2}}}}^{{\text{ext}}}$ $ a_{\text{O}_{\text{2}}}^{\text{ext}}=\left\{\begin{array}{c}\begin{array}{ll}\mathrm{exp}\left(\dfrac{2\Delta G_{\text{O}\left(\text{PbBi}\right)}^{\text{0}}}{RT}+2\mathrm{ln}\dfrac{M_{\text{PbBi}}}{M_{\text{O}}}+2\mathrm{ln}C_{\text{O}}\right) ,欠氧饱和\mathrm{LBE}环境\end{array} \\ a_{\text{Pb}}^{\text{-2}}\mathrm{exp}\left(\dfrac{2\Delta G_{\text{PbO}}^{\text{0}}}{RT}\right),氧饱和\mathrm{LBE}环境\end{array}\right. $
    $a_{{{\text{O}}_{\text{2}}}}^{{\text{int}}}$ $a_{{{\text{O}}_{\text{2}}}}^{{\text{int}}} = a_{{\text{Fe}}}^{{{ - 3/2}}}\exp \left( {\dfrac{{ - 549.05 + 0.1531}}{{RT}}} \right)$
    $\eta $ $\eta = {\left[ {1 + 3 \times {{10}^{ - 3}}\exp \left( {\dfrac{{11900}}{T}} \right)} \right]^{ - 1}}$
      参考氧分压为1 bar(1 bar=0.1 MPa);$\Delta G_{{\text{O}}\left( {{\text{PbBi}}} \right)}^{\text{0}}$、$\Delta G_{{\text{PbO}}}^0$—溶解氧和氧化铅吉布斯自由能;$\eta $—中间变量;MPbBi—铅铋的摩尔质量;MO—氧原子摩尔质量。
    下载: 导出CSV

    表  4  努塞尔数对比

    Table  4.   Nu Comparisons

    横截面高度/m 0.5 1.0 1.5 2.0
    式(17)计算值 21.51 20.77 20.36 20.36
    CFD计算值 20.89 20.91 20.90 20.89
    相对误差/% 2.89 −0.67 −2.63 −2.61
    下载: 导出CSV
  • [1] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625
    [2] TIAN S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480℃[J]. Oxidation of Metals, 2020, 93(1): 183-194.
    [3] LI H, ZHU H P, LIANG R X, et al. Numerical study of solid-state oxygen control bypass performance and corrosion distribution in a LBE flow loop[J]. Annals of Nuclear Energy, 2024, 199: 110341. doi: 10.1016/j.anucene.2024.110341
    [4] HOSEMANN P, FRAZER D, FRATONI M, et al. Materials selection for nuclear applications: Challenges and opportunities[J]. Scripta Materialia, 2018, 143: 181-187. doi: 10.1016/j.scriptamat.2017.04.027
    [5] 杜晓超. 液态金属中的固态氧控与相关问题研究[D]. 北京: 华北电力大学,2017.
    [6] WANG Y F, LI X B, LIANG R X, et al. Simulation of a solid-phase oxygen control scheme in lead-bismuth eutectic system[J]. Nuclear Engineering and Design, 2022, 394: 111821. doi: 10.1016/j.nucengdes.2022.111821
    [7] FENG W P, ZHANG X, CHEN H L. Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic[J]. Nuclear Engineering and Technology, 2020, 52(5): 908-917. doi: 10.1016/j.net.2019.10.026
    [8] FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708
    [9] MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017
    [10] NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223
    [11] SUGAWARA T, KATANO R, TSUJIMOTO K. Impact of impurity in transmutation cycle on neutronics design of revised accelerator-driven system[J]. Annals of Nuclear Energy, 2018, 111: 449-459. doi: 10.1016/j.anucene.2017.09.017
    [12] RODRÍGUEZ I M, HERNÁNDEZ-SOLÍS A, MESSAOUDI N, et al. The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation[J]. Nuclear Engineering and Technology, 2020, 52(10): 2274-2284. doi: 10.1016/j.net.2020.04.004
    [13] LI C, FANG X D, WANG Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern[J]. Corrosion Science, 2021, 180: 109214. doi: 10.1016/j.corsci.2020.109214
    [14] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051
    [15] ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012
    [16] LI X B, LIANG R X, WANG Y F, et al. An optimized numerical method on corrosion in the non–isothermal lead–bismuth eutectic loops with solid–phase oxygen control system[J]. Annals of Nuclear Energy, 2022, 172: 109084. doi: 10.1016/j.anucene.2022.109084
    [17] BERGER F P, HAU K F F L. Mass transfer in turbulent pipe flow measured by the electrochemical method[J]. International Journal of Heat and Mass Transfer, 1977, 20(11): 1185-1194. doi: 10.1016/0017-9310(77)90127-2
    [18] LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9
    [19] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049
    [20] ZHANG J, LI N. Oxidation mechanism of steels in liquid–lead alloys[J]. Oxidation of Metals, 2005, 63(5-6): 353-381. doi: 10.1007/s11085-005-4392-3
    [21] 戎利建,张玉妥,陆善平,等. 铅与铅铋共晶合金手册-性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社,2014: 31-128.
    [22] SUBBOTIN V I. Heat exchange and hydrodynamics in channels of complex geometry[C]//International Heat Transfer Conference 5. Tokyo: IHTC, 1974: 89-104.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  6
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-30
  • 修回日期:  2024-10-20
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回