Numerical Study on Oxidation and Dissolution/Precipitation Performances of the ADS Cladding
-
摘要: 为开展铅铋合金冷却加速器驱动次临界系统(ADS)堆芯燃料包壳氧化层的生长特性研究,进一步分析存在氧化层的燃料包壳传热,本文建立了ADS包壳氧化层生长和溶解/沉积模型,进一步耦合计算流体动力学(CFD)方法,研究并实现了存在溶解/沉积的包壳氧化层生长和燃料棒温度仿真。对自主设计的多束ADS燃料棒传热和包壳表层氧化、溶解/沉积的研究表明:在高氧浓度下,本文模型与实验吻合度高;最大氧化层厚度、溶解厚度出现在堆芯活性段的高温区,最大沉积厚度出现在低温区的入口端;运行10000 h氧化层总厚度约65 μm,由氧化层引起包壳内外温差增长的最大值为12.20 K。因此,本研究提出的流动液态铅铋环境ADS燃料包壳氧化层生长模型及其数值计算方法可以计算燃料包壳存在氧化层情形的燃料棒温度。
-
关键词:
- 加速器驱动次临界系统(ADS) /
- 包壳氧化层 /
- 溶解/沉积 /
- T91不锈钢
Abstract: To investigate the growth characteristics of the oxide scale in the fuel cladding of the lead-bismuth eutectic cooled Accelerator-driven Subcritical System (ADS), and to analyze the heat transfer in the fuel cladding with an oxide scale, the paper proposes a growth and dissolution/deposition model for ADS cladding oxide scale and couple it with the computational fluid dynamics (CFD) method, so as to investigate and realize the simulation of cladding oxide scale growth and fuel rod temperature in the presence of dissolution/deposition. The results of study on fuel rod heat transfer and cladding surface oxidation and dissolution/precipitation of our independently designed multi-beam ADS demonstrate that: the experimental data show a high level of agreement at elevated oxygen concentrations; the maximum oxide scale thickness and dissolution thickness are observed in the high-temperature region of the active zone within the core, while the maximum deposition thickness is in its inlet; the oxide scale reached a thickness of approximately 65 μm after 10000 h, with a maximum increase in temperature difference between the cladding inner and outer surface of 12.20 K. Therefore, ADS fuel cladding surface oxide scale growth model and its numerical calculation method, as proposed in this study, are capable of calculating the fuel rod temperatures for the fuel cladding with oxide scale in the flow liquid lead-bismuth eutectic environment. -
图 2 不同时刻氧化层厚度的实验值[8]与模拟值对比(负数表示向内生长)
Figure 2. Comparison between Simulated Values of Oxide Scale Thickness and Experimental Values at Different Time (Negative Values Represent Inward Growth)
表 1 元素在LBE内的溶解度[10]
Table 1. Solubility of Some Elements in LBE
元素 a b 温度区间/K Fe 3.14 14190 399~1173 O 1.20 3400 573~1013 a、b—溶解度公式Cs=10a−b/T中的拟合常系数。 表 2 消耗1 mol氧对应的吉布斯自由能(400~1000 K)
Table 2. Gibbs Free Energy by Consuming 1 mol O2 (400~1000 K)
反应类型 相应的吉布斯自由能/(J·mol−1) 2Pb+O2=2PbO −437610+199.1·T $\dfrac{3}{2} $Fe+O2=$\dfrac{1}{2} $Fe3O4 −551990+156.9·T 表 3 相关的参数计算式
Table 3. Expression for Related Parameters
参数 表达式 ${D_{\text{I}}}$ $ D_{\text{I}}=1.22 \times 10^4\exp\left(\dfrac{-27700}{T}\right) \cdot \left[1+1.56 \times 10^6\exp\left(\dfrac{-20100}{T}\right)\right]^{-1} $ ${D_{\text{v}}}$ ${D_{\text{v}}} = 0.177\eta \exp \left( {\dfrac{{ - 14600}}{T}} \right) + 1.16 \times {10^{ - 3}}\left( {1 - \eta } \right)\exp \left( {\dfrac{{ - 8670}}{T}} \right)$ ${K_{\text{I}}}$ ${K_{\text{I}}} = 1.93 \times {10^3}\exp \left( {\dfrac{{ - 43140}}{T}} \right) + 3.01 \times {10^9}\exp \left( {\dfrac{{ - 63270}}{T}} \right)$ ${K_{\text{v}}}$ ${K_{\text{v}}} = 2.04 \times {10^{ - 7}}\exp \left( {\dfrac{{27170}}{T}} \right)$ $a_{{{\text{O}}_{\text{2}}}}^{{\text{ext}}}$ $ a_{\text{O}_{\text{2}}}^{\text{ext}}=\left\{\begin{array}{c}\begin{array}{ll}\mathrm{exp}\left(\dfrac{2\Delta G_{\text{O}\left(\text{PbBi}\right)}^{\text{0}}}{RT}+2\mathrm{ln}\dfrac{M_{\text{PbBi}}}{M_{\text{O}}}+2\mathrm{ln}C_{\text{O}}\right) ,欠氧饱和\mathrm{LBE}环境\end{array} \\ a_{\text{Pb}}^{\text{-2}}\mathrm{exp}\left(\dfrac{2\Delta G_{\text{PbO}}^{\text{0}}}{RT}\right),氧饱和\mathrm{LBE}环境\end{array}\right. $ $a_{{{\text{O}}_{\text{2}}}}^{{\text{int}}}$ $a_{{{\text{O}}_{\text{2}}}}^{{\text{int}}} = a_{{\text{Fe}}}^{{{ - 3/2}}}\exp \left( {\dfrac{{ - 549.05 + 0.1531}}{{RT}}} \right)$ $\eta $ $\eta = {\left[ {1 + 3 \times {{10}^{ - 3}}\exp \left( {\dfrac{{11900}}{T}} \right)} \right]^{ - 1}}$ 参考氧分压为1 bar(1 bar=0.1 MPa);$\Delta G_{{\text{O}}\left( {{\text{PbBi}}} \right)}^{\text{0}}$、$\Delta G_{{\text{PbO}}}^0$—溶解氧和氧化铅吉布斯自由能;$\eta $—中间变量;MPbBi—铅铋的摩尔质量;MO—氧原子摩尔质量。 表 4 努塞尔数对比
Table 4. Nu Comparisons
横截面高度/m 0.5 1.0 1.5 2.0 式(17)计算值 21.51 20.77 20.36 20.36 CFD计算值 20.89 20.91 20.90 20.89 相对误差/% 2.89 −0.67 −2.63 −2.61 -
[1] ZHANG Y, WANG C L, LAN Z K, et al. Review of thermal-hydraulic issues and studies of lead-based fast reactors[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109625. doi: 10.1016/j.rser.2019.109625 [2] TIAN S J. Growth and exfoliation behavior of the oxide scale on 316L and T91 in flowing liquid lead–bismuth eutectic at 480℃[J]. Oxidation of Metals, 2020, 93(1): 183-194. [3] LI H, ZHU H P, LIANG R X, et al. Numerical study of solid-state oxygen control bypass performance and corrosion distribution in a LBE flow loop[J]. Annals of Nuclear Energy, 2024, 199: 110341. doi: 10.1016/j.anucene.2024.110341 [4] HOSEMANN P, FRAZER D, FRATONI M, et al. Materials selection for nuclear applications: Challenges and opportunities[J]. Scripta Materialia, 2018, 143: 181-187. doi: 10.1016/j.scriptamat.2017.04.027 [5] 杜晓超. 液态金属中的固态氧控与相关问题研究[D]. 北京: 华北电力大学,2017. [6] WANG Y F, LI X B, LIANG R X, et al. Simulation of a solid-phase oxygen control scheme in lead-bismuth eutectic system[J]. Nuclear Engineering and Design, 2022, 394: 111821. doi: 10.1016/j.nucengdes.2022.111821 [7] FENG W P, ZHANG X, CHEN H L. Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic[J]. Nuclear Engineering and Technology, 2020, 52(5): 908-917. doi: 10.1016/j.net.2019.10.026 [8] FENG W P, ZHANG X, CAO L K, et al. Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core[J]. Corrosion Science, 2021, 190: 109708. doi: 10.1016/j.corsci.2021.109708 [9] MARINO A, LIM J, KEIJERS S, et al. Numerical modeling of oxygen mass transfer in a wire wrapped fuel assembly under flowing lead bismuth eutectic[J]. Journal of Nuclear Materials, 2018, 506: 53-62. doi: 10.1016/j.jnucmat.2017.12.017 [10] NIU F L, CANDALINO R, LI N. Effect of oxygen on fouling behavior in lead–bismuth coolant systems[J]. Journal of Nuclear Materials, 2007, 366(1-2): 216-222. doi: 10.1016/j.jnucmat.2007.01.223 [11] SUGAWARA T, KATANO R, TSUJIMOTO K. Impact of impurity in transmutation cycle on neutronics design of revised accelerator-driven system[J]. Annals of Nuclear Energy, 2018, 111: 449-459. doi: 10.1016/j.anucene.2017.09.017 [12] RODRÍGUEZ I M, HERNÁNDEZ-SOLÍS A, MESSAOUDI N, et al. The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation[J]. Nuclear Engineering and Technology, 2020, 52(10): 2274-2284. doi: 10.1016/j.net.2020.04.004 [13] LI C, FANG X D, WANG Q S, et al. A synergy of different corrosion failure modes pertaining to T91 steel impacted by extreme lead–bismuth eutectic flow pattern[J]. Corrosion Science, 2021, 180: 109214. doi: 10.1016/j.corsci.2020.109214 [14] MARTINELLI L, BALBAUD-CÉLÉRIER F, TERLAIN A, et al. Oxidation mechanism of an Fe–9Cr–1Mo steel by liquid Pb–Bi eutectic alloy at 470℃ (Part II)[J]. Corrosion Science, 2008, 50(9): 2537-2548. doi: 10.1016/j.corsci.2008.06.051 [15] ZHANG J S, LI N. Analysis on liquid metal corrosion–oxidation interactions[J]. Corrosion Science, 2007, 49(11): 4154-4184. doi: 10.1016/j.corsci.2007.05.012 [16] LI X B, LIANG R X, WANG Y F, et al. An optimized numerical method on corrosion in the non–isothermal lead–bismuth eutectic loops with solid–phase oxygen control system[J]. Annals of Nuclear Energy, 2022, 172: 109084. doi: 10.1016/j.anucene.2022.109084 [17] BERGER F P, HAU K F F L. Mass transfer in turbulent pipe flow measured by the electrochemical method[J]. International Journal of Heat and Mass Transfer, 1977, 20(11): 1185-1194. doi: 10.1016/0017-9310(77)90127-2 [18] LI N. Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination[J]. Journal of Nuclear Materials, 2002, 300(1): 73-81. doi: 10.1016/S0022-3115(01)00713-9 [19] MARTINELLI L, BALBAUD-CÉLÉRIER F, PICARD G, et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb–Bi eutectic alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559. doi: 10.1016/j.corsci.2008.06.049 [20] ZHANG J, LI N. Oxidation mechanism of steels in liquid–lead alloys[J]. Oxidation of Metals, 2005, 63(5-6): 353-381. doi: 10.1007/s11085-005-4392-3 [21] 戎利建,张玉妥,陆善平,等. 铅与铅铋共晶合金手册-性能、材料相容性、热工水力学和技术[M]. 北京: 科学出版社,2014: 31-128. [22] SUBBOTIN V I. Heat exchange and hydrodynamics in channels of complex geometry[C]//International Heat Transfer Conference 5. Tokyo: IHTC, 1974: 89-104. -