Study on Oxidation Corrosion of Nuclear Graphite by Water Vapor
-
摘要: 为研究核石墨与水蒸气的氧化腐蚀反应特性,建立基于经典Langmuir-Hinshelwood(L-H)模型的石墨-水蒸气氧化腐蚀反应模型,开展了基于气体浓度法的石墨与水蒸气氧化腐蚀实验。实验结果显示在氦气水蒸气的混合气体流量为10 L/min且水蒸气浓度为3%~10%的实验工况下,温度大于950℃或1000℃时有气体产物CO2生成,另外在混合气体中添加1%H2未发现对氧化腐蚀速率有显著影响,这些与经典L-H模型有明显区别。因此,基于本研究的实验结果,提出了新的反应模型,增加了石墨与水蒸气反应生成CO2和H2的反应,去掉了L-H模型氢分压项,并使用实验数据完成了新模型的建模及验证。研究结果显示,新模型适用于水蒸气浓度相对高时的石墨-水蒸气氧化腐蚀模拟,能够相对准确地分析计算氧化腐蚀速率和气体生成速率。Abstract: In order to study the oxidation reaction properties of nuclear graphite by water vapor and establish the graphite-water vapor corrosion reaction model based on classical Langmuir-Hinshelwood (L-H) model, we conducted the experiments on the oxidation corrosion of graphite by water vapor based on gas concentration method. The experiment results demonstrated that CO2 was generated at the temperature higher than 950℃ or 1000℃ in the experimental condition of the helium and water vapor mixed gas flow rate of 10 L/min and the water vapo concentration of 3% to 10%, and the mixture added with 1% H2 has no obviously influence on reaction rate, which had obviously difference with classical L-H model. As a result, new reaction model was established based on the experiment results, which added the oxidation reaction of graphite by water vapor generating CO2 and H2 and removed the H2 partial pressure term in L-H model. The experiment data was used to build a new model and verify the model respectively. The study results demonstrated that the new model was suitable for the simulation of oxidation of graphite by water vapor at a relative high water vapor concentration, which could relatively accurately analyze and calculate the corrosion rate and gas generating rate.
-
Key words:
- Nuclear graphite /
- Water vapor /
- Activation energy /
- Oxidation corrosion /
- Reaction mechanism
-
表 1 国产核级石墨和IG110的物理性质对比
Table 1. Physical Property Comparasion of Domestic Nuclear Graphite and IG110
石墨类型 密度
/
(g·cm−3)孔隙率/% 热膨胀系数/10−6K–1 杨氏模量/
GPa抗压强度/
MPa杂质含量/
(μg·kg−1)国产核级石墨 1.83 12 4.8 11 77 ≤10 IG110 1.76 19 4.5 9 71 13 表 2 核石墨与水蒸气腐蚀实验工况
Table 2. Experimental Conditions for Corrosion of Nuclear Graphite by Water Vapor
实验编号 温度/℃ 总进气流量/(L·min−1) H2O浓度/% H2浓度/% 实验编号 温度/℃ 总进气流量/(L·min−1) H2O浓度/% H2浓度/% 2101 800 10 5 0 2201 800 10 5 1 2103 900 10 5 0 2202 900 10 5 1 2105 950 10 5 0 2203 1000 10 5 1 2107 1000 10 5 0 2204 1100 10 10 1 2109 1100 10 5 0 2301 800 10 3 0 2102 800 10 10 0 2302 900 10 3 0 2104 900 10 10 0 2303 1000 10 3 0 2106 950 10 10 0 2304 1100 10 3 0 2108 1000 10 10 0 2401 800 5 5 0 2110 1100 10 10 0 2402 1000 5 5 0 2403 800 20 5 0 2404 1000 20 5 0 表 3 腐蚀模型动力学参数
Table 3. Kinetic Parameter of Corrosion Model
数据来源 反应 参数值 拟合结果 R1 A1=15.3836 Pa–m·s−1,A3 =0.5128 Pa–m,Ea1=174.39 kJ·mol−1,Ea3=61.01 kJ·mol−1 R2 A4=7.6×104 Pa−1·s−1,Ea4=363.2 kJ·mol−1 Contescu[2] R1 A1,0=900 Pa–m·s−1,A2,0=110 Pa−0.5,A3,0=30 Pa−m,Ea1,0=274 kJ·mol−1,Ea2,0=74.66 kJ·mol−1,
Ea3,0=95.85 kJ·mol−1,mmax =1.50,T0 =1.33×103 K, $ \theta $=34.2 K -
[1] 徐世江,康飞宇. 《核工程中的炭和石墨材料》[M]. 北京:清华大学出版社,2010:252-294. [2] ALONSO G, RAMIREZ R, DEL VALLE E, et al. Process heat cogeneration using a high temperature reactor[J]. Nuclear Engineering and Design, 2014, 280: 137-143. doi: 10.1016/j.nucengdes.2014.10.005 [3] FANG C, MORRIS R, LI F. Safety features of high temperature gas cooled reactor[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1-3. [4] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010 [5] CONTESCU C I, MEE R W. Status of chronic oxidation studies of graphite:ORNL/TM-2016/195[R]. Tennessee: Oak Ridge National Laboratory, 2016. [6] WANG Y, ZHENG Y H, LI F, et al. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2014, 271: 404-410. doi: 10.1016/j.nucengdes.2013.12.009 [7] WANG C Q, SHI S B, ARCILESI D, et al. Scaling analysis and test facility design for steam ingress accident in MHTGR[C]//Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety. Gyeongju: Korean Nuclear Society, 2016. [8] CHO Y J, GARCIA D, YU H Z, et al. Oxidation behaviors of matrix-grade graphite during water vapor ingress accidents for high temperature gas-cooled reactors[J]. Carbon, 2021, 185: 161-176. doi: 10.1016/j.carbon.2021.09.032 [9] CHO Y J, LU K. Water vapor oxidation of SiC layer in surrogate TRISO fuel particles[J]. Composites Part B: Engineering, 2021, 215: 108807. doi: 10.1016/j.compositesb.2021.108807 [10] CHO Y J, LU K. Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors[J]. Carbon, 2020, 164: 251-260. doi: 10.1016/j.carbon.2020.04.004 [11] WICHNER R P, BURCHELL T D, CONTESCU C I. Penetration depth and transient oxidation of graphite by oxygen and water vapor[J]. Journal of Nuclear Materials, 2009, 393(3): 518-521. doi: 10.1016/j.jnucmat.2009.06.032 [12] CONTESCU C I, MEE R W, LEE Y J J et al. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors[J]. Carbon, 2018, 127: 158-169. doi: 10.1016/j.carbon.2017.11.001 [13] VELASQUEZ C, HIGHTOWER G, BURNETTE R. The oxidation of H-451 graphite by steam. Part I: reaction kinetics:GA-A14951[R]. Oakland: General Atomic Co. , 1978: 1-62. [14] WANG C Q, SUN X D, CHRISTENSEN R N. Multiphysics simulation of moisture-graphite oxidation in MHTGR[J]. Annals of Nuclear Energy, 2019, 131: 483-495. doi: 10.1016/j.anucene.2019.03.040 [15] HINSSEN H K, KÜHN K, MOORMANN R, et al. Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR[J]. Nuclear Engineering and Design, 2008, 238(11): 3018-3025. doi: 10.1016/j.nucengdes.2008.02.013 -