高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核石墨与水蒸气氧化腐蚀特性研究

申腾 王城喻 郭少强 贺楷

申腾, 王城喻, 郭少强, 贺楷. 核石墨与水蒸气氧化腐蚀特性研究[J]. 核动力工程, 2025, 46(4): 152-158. doi: 10.13832/j.jnpe.2024.090008
引用本文: 申腾, 王城喻, 郭少强, 贺楷. 核石墨与水蒸气氧化腐蚀特性研究[J]. 核动力工程, 2025, 46(4): 152-158. doi: 10.13832/j.jnpe.2024.090008
Shen Teng, Wang Chengyu, Guo Shaoqiang, He Kai. Study on Oxidation Corrosion of Nuclear Graphite by Water Vapor[J]. Nuclear Power Engineering, 2025, 46(4): 152-158. doi: 10.13832/j.jnpe.2024.090008
Citation: Shen Teng, Wang Chengyu, Guo Shaoqiang, He Kai. Study on Oxidation Corrosion of Nuclear Graphite by Water Vapor[J]. Nuclear Power Engineering, 2025, 46(4): 152-158. doi: 10.13832/j.jnpe.2024.090008

核石墨与水蒸气氧化腐蚀特性研究

doi: 10.13832/j.jnpe.2024.090008
详细信息
    作者简介:

    申 腾(1988—),男,硕士研究生,现主要从事耐高温慢化材料方面的研究,E-mail: shenteng@cnpe.cc

    通讯作者:

    郭少强,E-mail: guos2019@mail.xjtu.edu.cn

  • 中图分类号: TL342

Study on Oxidation Corrosion of Nuclear Graphite by Water Vapor

  • 摘要: 为研究核石墨与水蒸气的氧化腐蚀反应特性,建立基于经典Langmuir-Hinshelwood(L-H)模型的石墨-水蒸气氧化腐蚀反应模型,开展了基于气体浓度法的石墨与水蒸气氧化腐蚀实验。实验结果显示在氦气水蒸气的混合气体流量为10 L/min且水蒸气浓度为3%~10%的实验工况下,温度大于950℃或1000℃时有气体产物CO2生成,另外在混合气体中添加1%H2未发现对氧化腐蚀速率有显著影响,这些与经典L-H模型有明显区别。因此,基于本研究的实验结果,提出了新的反应模型,增加了石墨与水蒸气反应生成CO2和H2的反应,去掉了L-H模型氢分压项,并使用实验数据完成了新模型的建模及验证。研究结果显示,新模型适用于水蒸气浓度相对高时的石墨-水蒸气氧化腐蚀模拟,能够相对准确地分析计算氧化腐蚀速率和气体生成速率。

     

  • 图  1  石墨腐蚀实验台架工作原理图

    Figure  1.  Schematic Diagram of Graphite Corrosion Experiment Bench

    图  2  气体产物归一化浓度与腐蚀实验温度的关系

    Figure  2.  Relationship between the Normalized Concentration of Gas Products and Corrosion Experiment Temperature

    图  3  实验中石墨-水蒸气腐蚀速率与温度关系

    阴影区—R1数据拟合区;lnR_$f_{{\mathrm{H}}_2{\mathrm{O}}} $=a%—水蒸气浓度a%的实验条件下的总反应速率R的对数;lnRbx_$f_{{\mathrm{H}}_2{\mathrm{O}}} $=a%—水蒸气浓度a%的实验条件下反应速率Rbxx=1,2)的对数。

    Figure  3.  Relationship between the Corrosion Rate of Graphite by Water Vapor and the Temperature in the Experiment

    图  4  R1反应腐蚀速率实验值与拟合结果

    $f_{{\mathrm{H}}_2{\mathrm{O}}} $—水蒸气的浓度;EXP—试验数据点;FIT—拟合曲线。

    Figure  4.  Corrosion Rate of R1 Reaction in Experiment and Fitting Result

    图  5  R2反应腐蚀速率实验值与拟合结果

    Figure  5.  Corrosion Rate of R2 Reaction in Experiment and Fitting Result

    图  6  水蒸气的反应级数

    Figure  6.  Reaction Order for Water Vapor

    图  7  实验与计算的腐蚀速率对比

    Figure  7.  Comparison between Experimental and Calculated Corrosion Rates

    图  8  实验与计算的CO浓度对比

    Figure  8.  Comparison between Experimental and Calculated CO Concentrations

    图  9  实验与计算的CO2浓度对比

    Figure  9.  Comparison between Experimental and Calculated CO2 Concentrations

    图  10  实验与计算的失重率对比

    Figure  10.  Comparison between Experimental and Calculated Weight Lose Rates

    表  1  国产核级石墨和IG110的物理性质对比

    Table  1.   Physical Property Comparasion of Domestic Nuclear Graphite and IG110

    石墨类型密度
    /
    (g·cm−3)
    孔隙率/%热膨胀系数/10−6K–1杨氏模量/
    GPa
    抗压强度/
    MPa
    杂质含量/
    (μg·kg−1)
    国产核级石墨1.83124.81177≤10
    IG1101.76194.597113
    下载: 导出CSV

    表  2  核石墨与水蒸气腐蚀实验工况

    Table  2.   Experimental Conditions for Corrosion of Nuclear Graphite by Water Vapor

    实验编号 温度/℃ 总进气流量/(L·min−1) H2O浓度/% H2浓度/% 实验编号 温度/℃ 总进气流量/(L·min−1) H2O浓度/% H2浓度/%
    2101 800 10 5 0 2201 800 10 5 1
    2103 900 10 5 0 2202 900 10 5 1
    2105 950 10 5 0 2203 1000 10 5 1
    2107 1000 10 5 0 2204 1100 10 10 1
    2109 1100 10 5 0 2301 800 10 3 0
    2102 800 10 10 0 2302 900 10 3 0
    2104 900 10 10 0 2303 1000 10 3 0
    2106 950 10 10 0 2304 1100 10 3 0
    2108 1000 10 10 0 2401 800 5 5 0
    2110 1100 10 10 0 2402 1000 5 5 0
    2403 800 20 5 0
    2404 1000 20 5 0
    下载: 导出CSV

    表  3  腐蚀模型动力学参数

    Table  3.   Kinetic Parameter of Corrosion Model

    数据来源 反应 参数值
    拟合结果 R1 A1=15.3836 Pam·s−1A3 =0.5128 PamEa1=174.39 kJ·mol−1Ea3=61.01 kJ·mol−1
    R2 A4=7.6×104 Pa−1·s−1Ea4=363.2 kJ·mol−1
    Contescu[2] R1 A1,0=900 Pam·s−1A2,0=110 Pa−0.5A3,0=30 PamEa1,0=274 kJ·mol−1Ea2,0=74.66 kJ·mol−1
    Ea3,0=95.85 kJ·mol−1mmax =1.50,T0 =1.33×103 K, $ \theta $=34.2 K
    下载: 导出CSV
  • [1] 徐世江,康飞宇. 《核工程中的炭和石墨材料》[M]. 北京:清华大学出版社,2010:252-294.
    [2] ALONSO G, RAMIREZ R, DEL VALLE E, et al. Process heat cogeneration using a high temperature reactor[J]. Nuclear Engineering and Design, 2014, 280: 137-143. doi: 10.1016/j.nucengdes.2014.10.005
    [3] FANG C, MORRIS R, LI F. Safety features of high temperature gas cooled reactor[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1-3.
    [4] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010
    [5] CONTESCU C I, MEE R W. Status of chronic oxidation studies of graphite:ORNL/TM-2016/195[R]. Tennessee: Oak Ridge National Laboratory, 2016.
    [6] WANG Y, ZHENG Y H, LI F, et al. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor[J]. Nuclear Engineering and Design, 2014, 271: 404-410. doi: 10.1016/j.nucengdes.2013.12.009
    [7] WANG C Q, SHI S B, ARCILESI D, et al. Scaling analysis and test facility design for steam ingress accident in MHTGR[C]//Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety. Gyeongju: Korean Nuclear Society, 2016.
    [8] CHO Y J, GARCIA D, YU H Z, et al. Oxidation behaviors of matrix-grade graphite during water vapor ingress accidents for high temperature gas-cooled reactors[J]. Carbon, 2021, 185: 161-176. doi: 10.1016/j.carbon.2021.09.032
    [9] CHO Y J, LU K. Water vapor oxidation of SiC layer in surrogate TRISO fuel particles[J]. Composites Part B: Engineering, 2021, 215: 108807. doi: 10.1016/j.compositesb.2021.108807
    [10] CHO Y J, LU K. Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors[J]. Carbon, 2020, 164: 251-260. doi: 10.1016/j.carbon.2020.04.004
    [11] WICHNER R P, BURCHELL T D, CONTESCU C I. Penetration depth and transient oxidation of graphite by oxygen and water vapor[J]. Journal of Nuclear Materials, 2009, 393(3): 518-521. doi: 10.1016/j.jnucmat.2009.06.032
    [12] CONTESCU C I, MEE R W, LEE Y J J et al. Beyond the classical kinetic model for chronic graphite oxidation by moisture in high temperature gas-cooled reactors[J]. Carbon, 2018, 127: 158-169. doi: 10.1016/j.carbon.2017.11.001
    [13] VELASQUEZ C, HIGHTOWER G, BURNETTE R. The oxidation of H-451 graphite by steam. Part I: reaction kinetics:GA-A14951[R]. Oakland: General Atomic Co. , 1978: 1-62.
    [14] WANG C Q, SUN X D, CHRISTENSEN R N. Multiphysics simulation of moisture-graphite oxidation in MHTGR[J]. Annals of Nuclear Energy, 2019, 131: 483-495. doi: 10.1016/j.anucene.2019.03.040
    [15] HINSSEN H K, KÜHN K, MOORMANN R, et al. Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR[J]. Nuclear Engineering and Design, 2008, 238(11): 3018-3025. doi: 10.1016/j.nucengdes.2008.02.013
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  8
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2024-11-04
  • 刊出日期:  2025-08-15

目录

    /

    返回文章
    返回