Structure Design and Safety Analysis on Tube Sheet Plug of Steam Generator in Nuclear Power Plant
-
摘要: 核电厂蒸汽发生器(SG)管板在制造过程中漏钻一管孔,导致大部分U形管胀焊或定位胀后穿管时有一根U形管无法穿入,经研究,设备制造厂实施了对漏钻管孔对称位置的已加工管孔进行堵管的方案,此方案需对SG管板一次侧和二次侧分别进行堵管。针对该不符合项,从核安全审评角度重点对SG二次侧堵头设计、结构强度、流致振动、焊缝质量等进行了探讨与分析。同时,为了确保核安全,还进行了一次侧堵头失效后果分析、二次侧堵头结构安全设计以及焊缝质量的在役检查方案论证。结果表明,目前的堵管方案合理可行,但仍需加强在役检查阶段的跟踪检查,以保证管板堵孔处置的可靠性,确保SG的安全稳定运行。Abstract: A drilling hole on the tube sheet of steam generator (SG) was missed in the manufacturing process, and it was found that one U-shaped tube failed to pass through when most of the U-shaped tubes were expanded after welding or positioning. After research, the equipment manufacturer implemented the scheme of plugging the processed tube hole at the symmetrical position of the missed tube hole. This scheme needs to plug the primary side and the secondary side of the SG tube sheet respectively. Equipment manufacturers adopted the primary side and secondary side respectively plugging scheme. In view of this nonconformity, this paper mainly discusses and analyzes the secondary side plug design, structural strength, flow-induced vibration, weld quality and other aspects from the perspective of nuclear safety review. At the same time, in order to ensure the safety, the failure analysis of the primary side plug, the safety design of the secondary side plug structure and the demonstration of the in-service inspection scheme of the weld quality are also analyzed. The analysis results show that the current tube plugging scheme is reasonable and feasible, but the follow-up inspection in service should be strengthened to ensure the reliability of tube sheet plugging and ensure the safe and stable operation of SG.
-
Key words:
- Steam generator (SG) /
- Tube sheet /
- Plug structure /
- Safety analysis
-
表 1 二次侧堵头结构完整性分析工况
Table 1. Working Condition of Structure Integrity Analysis of Secondary Side Plug
分析工况 一次侧
温度/℃一次侧
压力/MPa二次侧
温度/℃二次侧
压力/MPa设计工况 343 17.13 316 8.9 水压试验工况 100 24.50 100 12.8 事故工况 360 17.80 360 12.0 表 2 各工况下应力评定汇总情况
Table 2. Stress Assessment Summary of Each Working Condition
位置 应力类型 设计工况 水压试验工况 事故工况 计算值
/MPa许用值/MPa 结论 计算值
/MPa许用值/MPa 结论 计算值
/MPa许用值/MPa 结论 一次侧 传热管远离不连续区域 总体一次薄膜 156.5 183.0 合格 222.8 227.7 合格 161.9 414.4 合格 薄膜加弯曲 206.1 274.5 294.2 341.6 213.8 621.6 传热管、堵头连接处 局部一次薄膜 33.5 241.5 70.3 302.4 51.1 579.6 堵头中心区域 总体一次薄膜 42.6 161.0 60.6 201.6 44.1 386.4 二次侧 传热管远离不连续区域 总体一次薄膜 80.9 183.0 合格 116.4 227.7 合格 109.1 414.4 合格 薄膜加弯曲 106.9 274.5 153.4 341.6 144.1 621.6 传热管、堵头连接处 局部一次薄膜 25.5 241.5 36.7 302.4 34.4 579.6 堵头中心区域 总体一次薄膜 22.0 161.0 31.7 201.6 29.7 386.4 表 3 堵头焊缝X射线检验主要参数
Table 3. Main Parameters of X-ray Inspection of Plug Weld
射线源 电压/kV 电流/mA 透照
方式曝光
时间/min像质计
灵敏度胶片
类型X射线 450 2 双壁透照 3.3 W15 C1 -
[1] 尹名. 浅论核电厂蒸汽发生器堵管处理及其发展方向[J]. 科技创新导报,2014, 11(14): 52-53, 55. doi: 10.3969/j.issn.1674-098X.2014.14.020 [2] 吴新丽,邹杰,李恩,等. 蒸汽发生器关键焊接技术[J]. 电焊机,2019, 49(4): 49-53. [3] 孙启才. 蒸汽发生器堵管对反应堆安全的影响[J]. 核科学与工程,1986, 6(4): 306-310. [4] 丁立朋. 浅析蒸汽发生器传热管破损事故处理[J]. 设备管理与维修,2022(23): 37-39. [5] 魏清海,叶琛. 核电站蒸汽发生器传热管堵管工艺研究[J]. 设备管理与维修,2012(2): 29-31. doi: 10.3969/j.issn.1001-0599.2012.02.015 [6] 章贵和,邓小云,徐晓,等. 蒸汽发生器焊接堵管堵头的设计与评价[J]. 原子能科学技术,2016, 50(7): 1270-1274. doi: 10.7538/yzk.2016.50.07.1270 [7] 李海龙,王庆,徐宇,等. 蒸汽发生器管板孔桥超差情况下的结构安全性分析[J]. 原子能科学技术,2014, 48(11): 2028-2032. doi: 10.7538/yzk.2014.48.11.2028 [8] 熊光明,朱勇,谭蔚. 核电厂蒸汽发生器传热管束流弹失稳评价关键参数分析及实验研究[J]. 核科学与工程,2023, 43(2): 428-437. doi: 10.3969/j.issn.0258-0918.2023.02.026 [9] 谭添才,高李霞,李朋洲,等. ZH-65型蒸汽发生器传热管束流致振动试验研究[J]. 核动力工程,2019, 40(S1): 63-66. [10] 徐亚晓,牛犇,贾钧森. 钠冷快堆蒸发器管板角焊缝射线检验技术探析[J]. 科技视界,2022(31): 67-70. [11] 华雄飞,毛羽飞,张铁辉,等. 核电站主回路系统主要设备的射线透照工艺[J]. 无损检测,2012, 34(2): 60-64. [12] 彭思桐,孙玉,杨兴旺,等. 田湾核电站蒸汽发生器传热管在役检查优化[J]. 压力容器,2022, 39(12): 71-77. doi: 10.3969/j.issn.1001-4837.2022.12.010 -