Experimental Research on the Flow Characteristics in the Top Cover Plenum and the Upper Plenum of Pressurized Water Reactor
-
摘要: 为获得某先进压水堆顶盖腔室和上腔室内流动特性,利用模化原理,采用1∶5比例设计实验模拟体,在不同主流工况下分别使用粒子图像测速(PIV)技术和自主开发的力传感器,对顶盖腔室内典型区域的流场分布特性进行研究,同时对上腔室出口附近控制棒导向筒组件(CRGT)和支承柱组件的横向水力载荷进行测量。结果表明:均匀与非均匀主流分配工况下,中心热套管喇叭口区域均存在较强烈的漩涡状横流,可能导致该区域热套管承受更强烈的冲击和磨损;CRGT所受载荷普遍高于支承柱,各测点受力方向与堆内冷却剂流向基本相符,载荷大小与测点至上腔室出口的距离呈负相关关系;均匀与非均匀工况下的冷却剂流动特性基本一致,验证了堆型设计的安全保守性。因此本研究对堆内结构力学分析、磨蚀机理分析、流致振动评价及落棒性能分析具有重要意义。Abstract: In order to obtain the flow characteristics in the top cover plenum and the upper plenum of an advanced pressurized water reactor, the flow field distribution characteristics of typical areas in the top cover plenum were studied by the particle image velocimetry (PIV) technique, and transverse hydraulic loads on the control rod guide tube assemblies (CRGT) and the support column assemblies near the outlet of the upper plenum were also measured by self-developed force sensors, under different mainstream flow conditions on a 1∶5 scaled experimental model. The results show that intense whirlpools were found near the central thermal sleeve bell mouth under uniform and non-uniform flow conditions, which may lead to stronger impact and abrasion on central thermal sleeves; loads on CRGTs are generally higher than those on support column assemblies, load directions of measuring points are basically consistent with flow directions of coolant, and the load is negatively correlated with the distance from the measuring point to the outlet of the upper plenum; the flow characteristics of coolant under non-uniform flow condition are basically consistent with those under uniform flow condition, which verifies the conservative safety of the reactor design. Therefore, this study is of great significance for structural mechanics analysis, abrasion mechanism analysis, flow-induced vibration evaluation and falling rod performance analysis.
-
Key words:
- Pressurized water reactor /
- Top cover plenum /
- Upper plenum /
- Flow field /
- Transverse hydraulic load
-
表 1 CRGT横向水力载荷相关参数测量结果
Table 1. Measurement Results of Relevant Parameters for CRGT Transverse Hydraulic Load
工况 M14K/(N·m) cos θy 方向 M13J/(N·m) cos θy 方向 M13L/(N·m) cos θy 方向 1.2Vp
非均匀[53.8,58.0) 0.68 ↙ [20.2,24.4) 0.85 ↙ [49.6,53.8) 0.91 ↙ 1.0Vp
非均匀[37.0,41.2) 0.69 ↙ [16.0,20.2) 0.84 ↙ [32.8,37.0) 0.91 ↙ 1.0Vp
均匀[37.0,41.2) 0.65 ↙ [16.0,20.2) 0.86 ↙ [37.0,41.2) 0.91 ↙ 1.2Vp
均匀[53.8,58.0) 0.66 ↙ [20.2,24.4) 0.83 ↙ [53.8,58.0) 0.87 ↙ 表 2 支承柱横向水力载荷相关参数测量结果
Table 2. Measurement Results of relevant parameters of Transverse Hydraulic Load on Support Column Assembly
工况 M13M/(N·m) cos θy 方向 M11M/(N·m) cos θy 方向 M15K/(N·m) cos θy 方向 1.2Vp
非均匀[9.0,
10.5)0.99 ↘ [4.5,6.0) 0.99 ↘ [15.0,16.5) 0.17 ↘ 1.0Vp
非均匀[6.0,
7.5)0.99 ↘ [3.0,4.5) 0.98 ↘ [9.0,
10.5)0.15 ↘ 1.0Vp
均匀[7.5,
9.0)0.97 ↙ [3.0,4.5) 0.94 ↘ [10.5,12.0) 0.15 ↘ 1.2Vp
均匀[10.5,12.0) 0.98 ↙ [4.5,6.0) 0.95 ↘ [16.5,18.0) 0.17 ↘ -
[1] WRIGHT S F, ZADRAZIL I, MARKIDES C N. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows[J]. Experiments in Fluids, 2017, 58(3): 108. [2] 曲文海,陈仕龙,熊进标,等. 定位格架下游流场可视化实验方法研究[J]. 核动力工程,2018, 39(2): 120-123. [3] 齐超,李鑫,谭思超,等. 摇摆条件下棒束通道流场特性研究[J]. 核动力工程,2023, 44(S1): 35-39. [4] 周国清,袁保宗,唐晓芳. 论CCD相机标定的内、外因素: 畸变模型与信噪比[J]. 电子学报, 1996, 24(11): 12-17, 21. doi: 10.3321/j.issn:0372-2112.1996.11.004 [5] 崔洪州,孔渊,周起勃,等. 基于畸变率的图像几何校正[J]. 应用光学,2006, 27(3): 183-185, 215. doi: 10.3969/j.issn.1002-2082.2006.03.004 [6] 禹明忠,王兴奎,庞东明,等. PIV流场量测中图像变形的修正[J]. 泥沙研究,2001(5): 59-62. doi: 10.3321/j.issn:0468-155X.2001.05.010 [7] 刘亦鹏,蔺帅南,王平阳,等. 低温气液两相弹状流中流场结构的PIV研究[J]. 工程热物理学报,2013, 34(10): 1868-1873. [8] 李如意,黄为民. 柱状曲面容器内粒子图像测速中径向畸变校正方法[J]. 上海理工大学学报,2008, 30(4): 315-318. doi: 10.3969/j.issn.1007-6735.2008.04.003 [9] 刘亦鹏,胡学羽,陈佳洛,等. 圆形截面管路内PIV流场测量的直接校正方法[J]. 上海交通大学学报,2013, 47(4): 525-531. [10] 高泽宇,李新阳,叶红卫. 流场测速中基于深度卷积神经网络的光学畸变校正技术[J]. 红外与激光工程,2020, 49(10): 20200267. [11] VAN HOUT R, GULITSKI A, BARNEA D, et al. Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water[J]. International Journal of Multiphase Flow, 2002, 28(4): 579-596. doi: 10.1016/S0301-9322(01)00082-9 [12] SOUSA R G, RIETHMULLER M L, PINTO A M F R, et al. Flow around individual Taylor bubbles rising in stagnant polyacrylamide (PAA) solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 135(1): 16-31. doi: 10.1016/j.jnnfm.2005.12.007 [13] POLONSKY S, SHEMER L, BARNEA D. The relation between the Taylor bubble motion and the velocity field ahead of it[J]. International Journal of Multiphase Flow, 1999, 25(6-7): 957-975. doi: 10.1016/S0301-9322(99)00037-3 [14] DE WITT B J, CORONADO-DIAZ H, HUGO R J. Optical contouring of an acrylic surface for non-intrusive diagnostics in pipe-flow investigations[J]. Experiments in Fluids, 2008, 45(1): 95-109. doi: 10.1007/s00348-008-0466-8 [15] 陈杰,彭园,雷涛,等. 基于水力学力的定位格架防勾挂设计研究[J]. 核动力工程,2018, 39(6): 19-22. [16] 黄雷,佟立丽. 压力容器下腔室冷却剂流动特性数值模拟研究[J]. 核科学与工程,2019, 39(1): 42-50. doi: 10.3969/j.issn.0258-0918.2019.01.008 [17] 张明乾,冉小兵,刘言午,等. CPR1000反应堆三维数值模拟分析及验证[J]. 核技术,2013, 36(10): 100601. [18] 苏前华,范冠华,吕路路,等. 搅混翼定位格架排布方式对5×5棒束通道热工水力特性影响的CFD研究[J]. 核动力工程,2023, 44(4): 88-94. [19] WANG M J, WANG L F, WANG Y J, et al. CFD Simulation of thermal hydraulic characteristics in a typical upper plenum of RPV[J]. Frontiers in Energy, 2021, 15(4): 930-945. doi: 10.1007/s11708-021-0728-1 [20] 沈秀中,于平安,杨冠岳. 压水堆控制棒导向筒结构改进对落棒的影响[J]. 上海交通大学学报,1996, 30(9): 110-116. [21] 王阔,苏前华,卢冬华,等. 主泵转矩在两相条件下特性试验研究[J]. 核动力工程,2023, 44(6): 134-139. [22] 汪春宇,彭帆,邢军,等. 小型压水堆下腔室交混特性实验研究[J]. 核动力工程,2021, 42(5): 96-102. [23] 丁雷,陈星,王典乐,等. ACP100反应堆整体水力模拟试验研究[J]. 核动力工程,2023, 44(S1): 29-34. [24] LI K P, WU Z Y, ZHANG K, et al. Experimental and theoretical research on upper plenum entrainment with air-water and steam-water[J]. Progress in Nuclear Energy, 2025, 178: 105525. doi: 10.1016/j.pnucene.2024.105525 [25] 赵汉中. 工程流体力学[M]. 武汉: 华中科技大学出版社,2005: 165. [26] YUAN D D, DENG J, HAN R, et al. Experimental study on flow structures of central blockage accidents in a rectangular channel using PIV and POD[J]. Annals of Nuclear Energy, 2021, 153: 108037. doi: 10.1016/j.anucene.2020.108037 -