高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铅铋介质中螺旋盘管管束三维流场数值模拟方法研究

殷一博 温济铭 田瑞峰 高璞珍 夏榜样 陈冲 张雪 谭思超

殷一博, 温济铭, 田瑞峰, 高璞珍, 夏榜样, 陈冲, 张雪, 谭思超. 铅铋介质中螺旋盘管管束三维流场数值模拟方法研究[J]. 核动力工程, 2025, 46(1): 63-72. doi: 10.13832/j.jnpe.2025.01.0063
引用本文: 殷一博, 温济铭, 田瑞峰, 高璞珍, 夏榜样, 陈冲, 张雪, 谭思超. 铅铋介质中螺旋盘管管束三维流场数值模拟方法研究[J]. 核动力工程, 2025, 46(1): 63-72. doi: 10.13832/j.jnpe.2025.01.0063
Yin Yibo, Wen Jiming, Tian Ruifeng, Gao Puzhen, Xia Bangyang, Chen Chong, Zhang Xue, Tan Sichao. Study on Numerical Simulation Method of Three-Dimensional Flow Field of Spiral Coil Tube Bundle in Lead-Bismuth Medium[J]. Nuclear Power Engineering, 2025, 46(1): 63-72. doi: 10.13832/j.jnpe.2025.01.0063
Citation: Yin Yibo, Wen Jiming, Tian Ruifeng, Gao Puzhen, Xia Bangyang, Chen Chong, Zhang Xue, Tan Sichao. Study on Numerical Simulation Method of Three-Dimensional Flow Field of Spiral Coil Tube Bundle in Lead-Bismuth Medium[J]. Nuclear Power Engineering, 2025, 46(1): 63-72. doi: 10.13832/j.jnpe.2025.01.0063

铅铋介质中螺旋盘管管束三维流场数值模拟方法研究

doi: 10.13832/j.jnpe.2025.01.0063
基金项目: 中核领创项目基金
详细信息
    作者简介:

    殷一博(1997—),男,博士研究生,现主要从事铅铋介质中流致振动方面的研究,E-mail: yiboyin747@hrbeu.edu.cn

    通讯作者:

    田瑞峰,E-mail: tianruifeng@hrbeu.edu.cn

  • 中图分类号: TL334

Study on Numerical Simulation Method of Three-Dimensional Flow Field of Spiral Coil Tube Bundle in Lead-Bismuth Medium

  • 摘要: 在换热器设计中,通过了解铅铋介质在管束中的旋流和涡流等三维流场特性,可以更好地预测和评估换热管设计,确保换热器的安全稳定运行。本研究基于数值模拟对温度为200℃、入口流速为0.5 m/s的铅铋介质在螺旋盘管中的漩涡脱落问题开展研究,以验证后的大涡模拟(LES)方法计算结果为标准,与不同模型进行对比,得到关于此问题的较高计算效率求解模型。结果表明,分离涡模拟(DES)剪切应力传输模型(SST) k-ω与LES模型相比具有较高的计算效率;在研究范围内螺旋盘管至少受漩涡脱落和湍流激振的影响,不同管子之间的脱落漩涡相互影响,导致升阻力频谱出现多峰特征;与直管束不同,螺旋管束下游的流动结构和速度分布都是不对称的,由于螺旋盘管升角的存在,增强了管间间隙的法向速度,且螺旋盘管的盘绕形状使横向速度分布更加不均匀。

     

  • 图  1  单排螺旋盘管模型

    Figure  1.  Single Row Spiral Coil Model

    图  2  光滑单棒表面的平均压力系数对比

    U—来流流速,m/s

    Figure  2.  Comparison of Average Pressure Coefficient of Smooth Single Rod Surface

    图  3  螺旋盘管网格划分

    Figure  3.  Spiral Tube Grid Division

    图  4  不同网格数量阻力计算结果

    Figure  4.  Drag Calculation Results with Different Grid Number

    图  5  升阻力及升阻力系数随时间变化曲线

    Figure  5.  Lift and Drag Coefficient Changing Curves with Time

    图  6  升阻力频率

    Figure  6.  Frequency of Lift and Drag

    图  7  T1的升力功率谱密度

    Figure  7.  Power Spectral Density of the Lift of T1

    图  8  观察面示意图

    Figure  8.  Schematic Diagram of Observation Surface

    图  9  初始阶段涡量云图

    V1、V2为漩涡编号

    Figure  9.  Contour of Vorticity in Initial Stage

    图  10  稳定阶段涡量云图

    Figure  10.  Contour of Vorticity in Stable Stage

    图  11  不同湍流模型关于螺旋盘管升阻力系数计算结果

    Figure  11.  Calculation Results of Lift and Drag Coefficient of Different Turbulence Models on Spiral Coils

    图  12  不同湍流模型关于螺旋盘管升阻力频率计算结果

    Figure  12.  Calculation Results of Different Turbulence Models on the Lift and Drag Frequency of Spiral Coil

    图  13  不同湍流模型的速度云图

    Figure  13.  Velocity Contour of Different Turbulence Models

    图  14  不同湍流模型的流线图

    Figure  14.  Streamline Chart of Different Turbulence Models

    图  15  不同位置处瞬时速度分布

    Figure  15.  Instantaneous Velocity Distribution at Different Positions

    表  1  不同湍流模型的Cd计算结果

    Table  1.   Calculation Results of Drag Coefficient of Different Turbulence Models

    湍流模型计算耗时/hCdCd相对偏差/%
    T1T2T3T1T2T3
    LES1384.583.694.45
    DES SST k-ω1114.323.554.345.703.822.57
    DES Realizable k-ε1202.892.443.0336.8833.7832.03
    Re-stress1832.822.283.0638.4138.1231.17
    下载: 导出CSV

    表  2  不同湍流模型的Cl计算结果

    Table  2.   Calculation Results of Lift Coefficient of Different Turbulence Models

    湍流模型计算耗时/hClCl相对偏差/%
    T1T2T3T1T2T3
    LES1381.810.370.60
    DES SST k-ω1111.660.400.68.287.140.90
    DES Realizable k-ε1200.810.590.8455.1957.1439.64
    Re-stress1830.740.470.5459.0925.5110.81
    下载: 导出CSV
  • [1] 魏诗颖,王成龙,田文喜,等. 铅基快堆关键热工水力问题研究综述[J]. 原子能科学技术,2019, 53(2): 326-336. doi: 10.7538/yzk.2018.youxian.0335
    [2] ŠADEK S, GRGIĆ D. Operation and performance analysis of steam generators in nuclear power plants[M]//Heat Exchangers-Advanced Features and Applications. Rijeka In Intech, 2017: 182-183.
    [3] 王钰淇,邬益东,王晓欣,等. 高温气冷堆螺旋管蒸汽发生器出口段流致振动分析[C]//中国核学会. 中国核科学技术进展报告(第八卷)中国核学会2023年学术年会论文集. 西安: 中国核学会,2023: 7,doi: 10.26914/c.cnkihy.2023.103813.
    [4] 李晓伟,吴莘馨,张作义,等. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版),2021, 61(4): 329-337, doi: 10.16511/j.cnki.qhdxxb.2021.25.029.
    [5] YILDIZ M A, MERZARI E, HASSAN Y A. Spectral and modal analysis of the flow in a helical coil steam generator experiment with large eddy simulation[J]. International Journal of Heat and Fluid Flow, 2019, 80: 108486. doi: 10.1016/j.ijheatfluidflow.2019.108486
    [6] ABOLMAALI A M, AFSHIN H. Numerical study of heat transfer between shell-side fluid and shell wall in the spiral-wound heat exchangers[J]. International Journal of Refrigeration, 2020, 120: 285-295. doi: 10.1016/j.ijrefrig.2020.08.010
    [7] ABOLMAALI A M, AFSHIN H. Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers[J]. International Journal of Thermal Sciences, 2019, 139: 105-117. doi: 10.1016/j.ijthermalsci.2019.01.038
    [8] WANG Y, GUO S, ZHU G R, et al. Effect of various structures on the shell-side flow over coil tube bundles[J]. Chemical Engineering Science, 2023, 268: 118408. doi: 10.1016/j.ces.2022.118408
    [9] FENG J Y, ACTON M, BAGLIETTO E, et al. On the relevance of turbulent structures resolution for cross-flow in a helical-coil tube bundle[J]. Annals of Nuclear Energy, 2020, 140: 107298. doi: 10.1016/j.anucene.2019.107298
    [10] 王聪,张巍,李净松,等. 螺旋管式直流蒸汽发生器壳侧流场数值模拟方法研究[J]. 核动力工程,2021, 42(4): 171-175, doi: 10.13832/j.jnpe.2021.04.0171.
    [11] LEE S J, HASSAN Y A. Numerical investigation of helical coil tube bundle in turbulent cross flow using large eddy simulation[J]. International Journal of Heat and Fluid Flow, 2020, 82: 108529. doi: 10.1016/j.ijheatfluidflow.2019.108529
    [12] YILDIZ M A, MERZARI E, HASSAN Y A. Large eddy simulation of 5-tube bundle helical coil steam generator test section[C]//26th International Conference on Nuclear Engineering. London: American Society of Mechanical Engineers, 2018, 51524: V008T09A043.
    [13] ROLLET-MIET P, LAURENCE D, FERZIGER J. LES and RANS of turbulent flow in tube bundles[J]. International Journal of Heat and Fluid Flow, 1999, 20(3): 241-254. doi: 10.1016/S0142-727X(99)00006-5
    [14] LEE S J, LEE S, HASSAN Y A. Numerical investigation of turbulent flow in an annular sector channel with staggered semi-circular ribs using large eddy simulation[J]. International Journal of Heat and Mass Transfer, 2018, 123: 705-717. doi: 10.1016/j.ijheatmasstransfer.2018.03.026
    [15] ACHENBACH E. Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re=5×106[J]. Journal of Fluid Mechanics, 1968, 34(4): 625-639. doi: 10.1017/S0022112068002120
    [16] KOLMOGOROV A N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers[J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 434(1890): 9-13. doi: 10.1098/rspa.1991.0075
    [17] 张显雄,张志田,张伟峰,等. 五种湍流涡粘模型在二维方柱绕流数值模拟中的对比研究[J]. 空气动力学学报,2018, 36(2): 339-349.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  58
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-06
  • 修回日期:  2024-07-29
  • 刊出日期:  2025-02-15

目录

    /

    返回文章
    返回