Investigation of Graphite Oxidation Based on Four-step Reaction Model
-
摘要: 为了建立气冷微堆堆芯石墨与氧气的腐蚀反应分析方法,本文基于Arrhenius反应式建立石墨氧化腐蚀的四步反应模型。模型的四步反应分别代表石墨与氧气在反应过程中可能发生的4种化学反应,并增加了反应活性面积以模拟失重率对腐蚀速率的影响。通过开展基于气体浓度法的石墨氧化腐蚀实验,得到500~1100℃下不同流量和不同氧气浓度的石墨氧化腐蚀速率,实验数据分别用于腐蚀参数拟合和模型验证。建模及验证分析结果表明,所拟合的四步反应模型能够适用于石墨氧化腐蚀速率的计算分析并能够区分反应产物,且模型反应活性面积的增加更有利于准确预测高失重下的氧化腐蚀速率。Abstract: In order to establish the analysis method of corrosion reaction between graphite and oxygen in the core of Micro Gas-Cooled Reactor, a four-step reaction model of graphite oxidation corrosion is established based on Arrhenius equation. The four-step reaction of the model represents four possible chemical reactions between graphite and oxygen, and the reactive area is increased to simulate the influence of weight loss rate on corrosion rate. Through the experiment of graphite oxidation corrosion based on gas concentration method, the oxidation corrosion rates of graphite with different gas flow rates and oxygen concentrations at 500-1100°C were obtained, and the experimental data were used for corrosion parameter fitting and model verification respectively. The results of modeling and verification analysis show that the fitted four-step reaction model can be applied to the calculation and analysis of the oxidation corrosion rate of graphite and can distinguish the reaction products, and the increase of the reactive area of the model is more conducive to accurately predicting the oxidation corrosion rate under high weight loss.
-
Key words:
- Graphite /
- Oxidation /
- Activation energy /
- Experiment /
- Reaction model
-
表 1 国产核级石墨和IG110核级石墨的物理性质对比
Table 1. Properties of Domestic Nuclear Graphite and IG110
石墨类型 密度/
(g·cm−3)孔隙
率/%热膨胀
系数/
10−6K−1杨氏
模量/GPa抗压
强度/MPa杂质
含量/10−6国产核
级石墨1.83 12 4.8 11 77 ≤10 IG110 1.76 19 4.5 9 71 13 表 2 石墨氧化腐蚀实验工况
Table 2. Experimental Conditions of Graphite Oxidation Corrosion
实验
编号温度/
℃Qv/
(L·min−1)O2浓度/
%实验
编号温度/℃ Qv/
(L·min−1)O2浓度/
%1201 500 10 10 1202 500 10 20 1203 550 10 10 1204 550 10 20 1205 600 10 10 1206 600 10 20 1207 650 10 10 1208 650 10 20 1209 700 10 10 1210 700 10 20 1211 750 10 10 1212 750 10 20 1213 800 10 10 1214 800 10 20 1215 900 10 10 1216 900 10 20 1217 1000 10 10 1218 1000 10 20 1219 1100 10 10 1220 1100 10 20 1101 550 20 2.5 1102 550 20 5 1103 600 20 2.5 1104 600 20 5 1105 700 20 2.5 1106 700 20 5 1107 800 20 2.5 1108 800 20 5 1109 900 20 2.5 1110 900 20 5 1111 1000 20 2.5 1112 1000 20 5 1113 1100 20 2.5 1114 1100 20 5 表 3 石墨氧化腐蚀模型中动力学参数
Table 3. Kinetic Parameters in Graphite Oxidation Corrosion Model
反应 LU W[2] 拟合结果 A0/
s−1Ea0/
(kJ·mol−1·K−1)A/
(m3·mol−1·s−1)Ea/
(kJ·mol−1·K−1)R1 1.14×108 222.5 2.3712×106 222.79 R2 3.27×106 189.1 6.8016×104 189.35 R3 1.24×108 333.6 2.5792×106 334.03 R4 1.30×108 113.0 2.6104×106 137.38 -
[1] 徐世江. 《核工程中的炭和石墨材料》出版发行[J]. 新型炭材料,2011, 26(2): 122. [2] ALONSO G, RAMIREZ R, DEL VALLE E, et al. Process heat cogeneration using a high temperature reactor[J]. Nuclear Engineering and Design, 2014, 280: 137-143. doi: 10.1016/j.nucengdes.2014.10.005 [3] FANG C, MORRIS R, LI F. Safety features of high temperature gas cooled reactor[J]. Science and Technology of Nuclear Installations, 2017, 2017: 1-3. [4] AZEVEDO C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Engineering Failure Analysis, 2011, 18(8): 1943-1962. doi: 10.1016/j.engfailanal.2011.06.010 [5] KIM E S, NO H C. Experimental study on the oxidation of nuclear graphite and development of an oxidation model[J]. Journal of Nuclear Materials, 2006, 349(1-2): 182-194. doi: 10.1016/j.jnucmat.2005.10.015 [6] 王鹏,于溯源. 核级石墨氧化腐蚀模型研究[J]. 原子能科学技术,2012, 46(1): 84-88. doi: 10.7538/yzk.2012.46.01.0084 [7] 徐伟,石磊,郑艳华,等. 核级石墨IG-110氧化模型研究[J]. 原子能科学技术,2015, 49(S1): 475-480. [8] LU W, LI X W, WU X X, et al. Investigation on the oxidation behavior and multi-step reaction mechanism of nuclear graphite SNG742[J]. Journal of Nuclear Science and Technology, 2020, 57(3): 263-275. doi: 10.1080/00223131.2019.1671910 [9] EL-GENK M S, TOURNIER J M P. Development and validation of a model for the chemical kinetics of graphite oxidation[J]. Journal of Nuclear Materials, 2011, 411(1-3): 193-207. doi: 10.1016/j.jnucmat.2011.01.129 [10] WANG C Q, SUN X D, CHRISTENSEN R N. Multiphysics simulation of moisture-graphite oxidation in MHTGR[J]. Annals of Nuclear Energy, 2019, 131: 483-495. doi: 10.1016/j.anucene.2019.03.040 [11] HINSSEN H K, KÜHN K, MOORMANN R, et al. Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR[J]. Nuclear Engineering and Design, 2008, 238(11): 3018-3025. doi: 10.1016/j.nucengdes.2008.02.013 -